
Computer Mathematics

Using the

Graphing Calculator
[image: image64.wmf]
Commonwealth of Virginia

Department of Education

Richmond, Virginia

2003
Computer Mathematics Using the Graphing Calculator
Copyright © 2003

by the

Virginia Department of Education

P. O. Box 2120

Richmond, Virginia 23218-2120

www.pen.k12.va.us
All rights reserved. Reproduction of materials contained herein for instructional purposes in Virginia classrooms is permitted.

Superintendent of Public Instruction

Jo Lynne DeMary

Assistant Superintendent for Instruction

Patricia I. Wright

Office of Secondary Instructional Services

Maureen B. Hijar, Director

Deborah Kiger Lyman, Mathematics Specialist

Notice to the Reader

The Virginia Department of Education does not unlawfully discriminate on the basis of sex, race, color, religion, handicapping conditions, or national origin in employment or in its educational programs and activities.

Acknowledgements

Authors

David Lineweaver, Harrisonburg High School, Harrisonburg City Public Schools

Terry Murray, Harrisonburg High School, Harrisonburg City Public Schools

Computer Mathematics Advisor

Gary Gogerty, James Breckinridge Middle School, Roanoke City Public Schools
Table of Contents

Page

Overview

 5

Scope and Sequence

 9

Units

1 Program Design

10

2 Creating a Program

15

3 Input and Output

17

4 Formulas

20

5 Conditionals

27

6 Loops

37

7 Occupational and Consumer Applications

47

8 Built-In Applications (APPS)

58

9 Subroutines

60

Student Assessment

76

Grading Rubric

77

Forms

78

Resources

79

Overview

Goal

To provide inservice and preservice mathematics teachers with course materials that address the Computer Mathematics Standards of Learning using the graphing calculator as the primary computing device.

Rationale
The revision of the Computer Mathematics standards in 2001 provided an opportunity to think about mathematical problem solving through computer programming while avoiding the need to dedicate a computer lab to the course. Because all high schools already have graphing calculators on hand, a computer mathematics course that could be taught using the programming capabilities of the graphing calculator would allow any interested high school to offer students the opportunity to take Computer Mathematics.
Limitations

A graphing calculator will never be mistaken for a computer. There are obvious differences. The graphing calculator measures its random access memory and storage capacity in bytes or kilobytes rather than megabytes or gigabytes. There are limitations to the size of the programs that can be written and the number of programs that can be stored on a calculator as compared to a computer. Printed displays may be limited to 16 characters at a time using a graphing calculator compared to no limitation using a computer. The graphing calculator may allow variable types for real numbers, complex numbers, and strings but may not be capable of declaring variables specifically for characters or Boolean (COM.10). However, treating a character as a one-letter string and using real number variables with values of 0 for false and 1 for true simulates Boolean variables. Unlike other programming languages, the graphing calculator has one category for all real numbers and may not distinguish between integer, rational, and other subsets of the real numbers as do other programming languages. Even though students may not “use” some variable types on the calculator (COM.10), they can still be taught to “define” these variable types (COM.9). Remark statements included in a program as documentation will be limited on the calculator. Most documentation will need to be done as a separate document and submitted when the project is completed. The size of the calculator screen will limit output formatting. Programs using graphics (COM.8) or involving graphics animation (COM.17) will be limited. Despite their impact on the size and complexity of programs, the limitations of the graphing calculator do not constrain access to the Computer Mathematics standards.

Computer Mathematics Standards of Learning

General Goals:

COM.1
The student will apply programming techniques and skills to solve practical problems in mathematics arising from consumer, business, personal finance, leisure activities, sports, probability and statistics, and other applications in mathematics. Problems will include opportunities for students to analyze data in charts, graphs, and tables and to use their knowledge of equations, formulas, and functions to solve these problems.

COM.20
The student will design, write, test, debug, and document a complete structured program that requires the synthesis of many concepts contained in previous standards.

Program Design:

COM.2
The student will design, write, test, debug, and document a program. Programming documentation will include pre-conditions and post-conditions of program segments, input/output specifications, the step-by-step plan, the test data, a sample run, and the program listing with appropriately placed comments.

COM.3
The student will write program specifications that define the constraints of a given problem. These specifications will include descriptions of pre-conditions, post-conditions, the desired output, analysis of the available input, and an indication as to whether or not the problem is solvable under given conditions.

COM.4
The student will design a step-by-step plan (algorithm) to solve a given problem. The plan will be in the form of a program flowchart, pseudo code, hierarchy chart, and/or data-flow diagram.

COM.5
The student will divide a given problem into manageable sections (modules) by task and implement the solution. The modules will include an appropriate user-defined function, subroutines, and procedures. Enrichment topics might include user-defined libraries (units) and object-oriented programming.

Input/Output:

COM.6
The student will design and implement the input phase of a program, which will include designing screen layout and getting information into the program by way of user interaction, data statements, and/or file input. The input phase also will include methods of filtering out invalid data (error trapping).

COM.7
The student will design and implement the output phase of a computer program, which will include designing output layout, accessing a variety of output devices, using output statements, and labeling results.

COM.8
The student will design and implement computer graphics, which will include topics appropriate for the available programming environment as well as student background. Students will use graphics as an end in itself, as an enhancement to other output, and as a vehicle for reinforcing programming techniques.

Handling Variables:

COM.9
The student will define simple variable data types that include integer, real (fixed and scientific notation), character, string, and Boolean.

COM.10
The student will use appropriate variable data types including integer, real (fixed and scientific notation), character, string, and Boolean. This will also include variables representing structured data types.

COM.11
The student will describe the way the computer stores, accesses, and processes variables, including the following topics: the use of variables versus constants, variables addresses, pointers, parameter passing, scope of variables, and local versus global variables.

Writing a Program:

COM.12
The student will translate a mathematical expression into a computer statement, which involves writing assignment statements and using the order of operations.

COM.13
The student will select and implement built-in (library) functions in processing data.

COM.14
The student will implement conditional statements that include “if/then” statements, “if/then/else” statements, case statements, and Boolean logic.

COM.15
The student will implement loops, including iterative loops. Other topics will include single entry point, single exit point, pre-conditions, and post-conditions.

COM.16
The student will select and implement appropriate data structures, including arrays (one-dimensional and/or multidimensional), files, and records. Implementation will include creating the data structure, putting information into the structure, and retrieving information from the structure.

COM.17
The student will implement pre-existing algorithms, including sort routines, search routines, and simple animation routines.

Testing and Debugging a Program:

COM.18
The student will test a program, using an appropriate set of data. The set of test data should be appropriate and complete for the type of program being tested.

COM.19
The student will debug a program, using appropriate techniques (e.g., appropriately placed controlled breaks, the printing of intermediate results, and other debugging tools available in the programming environment), and identify the difference between syntax errors and logic errors.

Student Prerequisites

Students in Computer Mathematics will be assumed to have successfully completed Algebra 1 or Algebra I, Part 1 and Algebra I, Part 2. Computer Mathematics is a board-approved course above the level of algebra and geometry and can be used to satisfy the mathematics requirements for a standard diploma, modified standard diploma, or general achievement diploma.

Teacher Prerequisites

Teachers of Computer Mathematics should have a working knowledge of the graphing calculator and an understanding of basic computer programming techniques such as conditionals (“if” and “if...else”) and loops. They do not need to be able to write a computer program in a specific language, such as BASIC, C++, or Java.
Computer Mathematics Scope and Sequence

I. Overview of the course

II. Scope and sequence

III. Units

A. Tour of the keys

1. Basic keys, functions, and menus

2. Graphing

3. Running programs and applications

B. Program Design

1. Process of putting together a program

2. Forms, flowcharts, and pseudo code

3. Program documentation

C. TI-83 programming basics

D. Input/Output

1. Variables

2. Input

3. Output

E. Formula problems

F. Conditional Statements

1. Boolean statements

2. IF statements – Single selection

3. IF/ELSE statements – Double selection

4. IF/ELSE/GOTO – Multiple selection

G. Looping Statements

1. Iterative loops

2. Pre-test loop

3. Post-test loop

H. Occupational and Consumer Applications

I. Built-in Applications (APPS)

1. Loans

2. Savings

3. Amortization

J. Subroutines

K. Lists

L. Matrices

M. Suggestions for overall evaluation of student work

Program Design

I.
SOL: COM.1, COM.2, COM.3, COM.4, COM.5, COM.18, COM.19, COM.20

II.
Overview

Programming is much more than punching keys. Good programmers do more thinking than typing, just as good problem solvers engage in situational analysis before they act. The purpose of this unit is to develop problem-solving skills.

To teach good programming it is necessary to teach good problem-solving strategies and techniques. To teach good problem-solving techniques it is necessary to develop logical thought patterns and to practice. Problem solving is not a skill that one ever masters; instead, it must be honed continually to be maintained. However, pure repetition can often be counter-productive. “Practice” does not make “perfect”. Perfect practice makes perfect. A structure for practicing these skills must be in place and careful guidance and encouragement given, especially during the student’s first tentative steps along the way.

A football coach does not teach a new play to his entire offensive team at one time. The complex play is broken down into what has to been done by each position player and then those roles are practiced over and over. Only then is the team brought together and the roles merged. The play is then practiced in its entirety. The results are evaluated; modifications made to assigned roles; and the results evaluated again.

Likewise a basketball player who is a good foul shooter does not stop practicing his foul shooting because he has been successful in the past. He continues to practice to maintain his level of excellence.

It is important that the process of learning good programming techniques (problem solving) be broken down into manageable tasks. These tasks must be practiced regularly in a consistent and structured format until they become ingrained.

III.
Points of Emphasis

· RIP IT method

· What are the desired Results of the program?

· What answer(s) is the program supposed to produce?

· What Information does the program have to work with?

· What information does the program already know?

· What information will the user supply at run time?

· Develop a Plan.

· Formula

· Multi-step algorithm

· Implement the plan.

· Test the results.

· Develop realistic test data

· stop and evaluate the program.

· What would you change to improve it?

· Could you do it more efficiently?

IV.
Methods

RIP IT is a mnemonic device for remembering the logical progression through the problem solving approach to programming. This set of instructions is similar to the approach often taken in solving word problems. Writing a program is solving a word problem.

R is for results

What is the program supposed to do? What “answers” are to be found? Often students get lost in the description of the problem and lose sight of the problem goal. It is important that students be able to identify and state the goal of the problem. Practicing this skill frequently will enhance student proficiency at identifying the goal of the problem and his/her confidence as a programmer.

I is for information

After the goal of a problem is identified, the programmer must ascertain what information is available that might help in solution of the problem. This information will be in one of several forms.

· The information might be given in the problem, like the length of a side of a triangle or the price of a box of pencils. This type of information should be marked, highlighted, or recorded.

· The information might be implied in the problem and the student would have to find the information. For example, if the sales tax rate is needed to solve a problem, the student might be given the amount of the purchase and the amount of tax paid.

· The program user might be required to supply information while the program is running. This type of information must be stored in a variable for later use.

The ability to recognize the relevant information given in the problem is a problem- solving skill that requires regular practice to maintain a high level of proficiency.

P is for Plan

The next step in the process is to develop a plan to use the information supplied to attain the program goal. This is the skill that makes good problem solvers. Good programmers analyze the information they have and formulate a plan to solve the problem.

Top-Down Programming

One common approach to problem solving is to attack the problem from the top down. List the large-scale jobs that have to be done in the order in which they must be done. Using a stepwise refinement process, the programmer analyzes each job, breaking it down into small, manageable tasks. The process is repeated until a plan is developed. The thought process for the top-down method requires considering the tasks as part of an outline. What are the Roman numerals of the outline?

Bottom-Up Programming

This approach to problem solving involves listing all of the subsidiary tasks that need to be accomplished and then assembling the tasks into logical units to build the solution to the problem.

Both approaches have strengths and weaknesses. The most realistic approach to problem solving is probably a combination of top-down and bottom-up.

There are several vehicles for developing an algorithm.

· Flow-charting: A flowchart is a diagram of a program plan. It uses a set of shapes and arrows to display the logic flow of a program. Flowcharts are effective in displaying the flow of conditional structures and looping structures. However, as the programs increase in complexity, flowcharts tend to become cumbersome.

· Pseudo code: Pseudo code is a combination of English and calculator/computer commands used to plan an algorithm. Pseudo code is usually written in semi-outline form and is often little more than a list of jobs that need to be accomplished.

· Hierarchy Chart: A hierarchy chart is a type of diagram of the plan for solving a problem. Hierarchy charts are good for analyzing the overarching level of complex programs, but do not handle loop structures and conditionals efficiently.

I is for Implement

In the implementation phase of the programming sequence, the student goes to the keyboard and codes in the program. While this section is very important, it is also the part of the process that will change over time. While the algorithm for finding the mean of three numbers will not change, the “magic words” of the programming language that teach the machine to do the job will vary from machine to machine and from computer language to computer language. The emphasis needs to remain on the process, not the results.

T is for Test and Update

This is probably the most neglected phase of the process. Students (and teachers) are usually so glad (or relieved) to finally get a program to run that they assume that the results it produces are correct. It is important that programs be tested thoroughly and modifications made to enhance the program’s performance.

The teacher must develop methods of ingraining the habit of testing in students.

· At program turn-in time, have the student enter a teacher-selected data set with known results and do not accept the program if it does not perform as it should. As the programs increase in complexity, the teacher should make sure to test the “special cases” that produce invalid results.

· Supply several sets of test data to the student at assignment time that will illustrate the “potholes” in the algorithm.

· Force the students to develop their own sets of test data and record them as part of the program documentation.

V. Activities

It is critical that the student have a great deal of practice in each of the five phases of the program development cycle. The entire cycle needs to be emphasized throughout the course. Resist the temptation to not do all of the phases with trivial programs. In order to be able to complete complex programs, students must have practice doing each phase with simple programs.

Select a source of simple formula problems (See Formula Problem Sheet). It is not important that the student have the programming expertise to actually write the code necessary to solve the problem for this to be a successful activity.

· Have students work through the list of programs, underlining the desired output in each.

· Have students circle the numbers that will be entered at run time.

· Have students circle any formulas that will be needed.

· Develop a plan for solving each problem. This could be a flowchart, an outline or, particularly in the early part of the class, sentence form.

Formula Problem Sheet

1) Given the number of points a basketball player has scored and the number of games

played, print the points-per-game average. (1 decimal place)

2) A baseball player’s ERA (Earned Run Average) is the number of earned runs

divided by the number of innings pitched then multiplied by 9. Given the number of earned

runs and the innings pitched, print the ERA. (2 decimal places)

3) Given the amount of a sale and the rate of commission, print the dollar amount of the commission. (2 decimal places and labeled with a $).

4) Given the amount of the principal, the interest rate, and the number of years, calculate

and print the amount of interest earned and the total balance after adding the principal and

the interest together (2 decimal places with $) Remember: interest = principal * rate * time.

5) Given the pay per hour, the regular hours, and the overtime hours worked in a week,

and the fact that the worker makes time-and-a-half for overtime; print the regular pay, the

overtime pay, and the total pay. (2 places with $)

6) Given the linear equation Ax + B = C where a ≠ 0, input A, B, and C and solve for x.

Remember your algebra techniques to get
[image: image1.wmf]x

=

C

-

B

A

 . (3 decimal places)

7) Given the radius of a circle, print its area and circumference.
[image: image2.wmf]Area

=

p

r

2

 and

[image: image3.wmf]circumference

=

2

p

r

 where pi is a constant 3.14159. (3 decimal places)

8) Given the length of the two legs of a right triangle (a and b), print the length of the

hypotenuse (c), the perimeter, and the area. Remember
[image: image4.wmf]c

2

=

a

2

+

b

2

 and

[image: image5.wmf]perimeter

=

a

+

b

+

c

 and
[image: image6.wmf]area

=

1

2

ab

 . (3 decimal places)

9) Evaluate the discriminant of the quadratic equation
[image: image7.wmf]ax

2

+

bx

+

c

=

0

 given a, b, and c.

The discriminant is
[image: image8.wmf]b

2

-

4

ac

. (2 decimal places)

10) Let P and Q be two points on a non-vertical line in the Cartesian plane. Given the
coordinates of P(xp, yp) and Q(xq, yq), compute the slope of the line through P and Q, the

distance between P and Q.
[image: image9.wmf]slope

=

yq

-

yp

xq

-

xp

 and distance =
[image: image10.wmf]22

()()

yqypxqxp

-+-

.

(4 decimal places)
11) Ask for a person’s name, mathematics score, and verbal score. Calculate the total
SAT score. Do this for 3 people. Print the results in a table. Write a program that will ask

the user for the number and unit price of the pencils, pens, and notebooks purchased. Calculate

and print the total cost of the items. Assuming that the sales tax rate is 5%, calculate and print

the sales tax. Calculate and print the total cost, including tax, for the purchases.
Creating a Program

· To execute a program
Press the [PRGM] key to access the program menu. Select a program and press [ENTER] to execute a program. A program can also be selected by pressing the number beside the program in the [PRGM] menu.

· To create a new program

Press the [PRGM] key to access the program menu. Select NEW and press [ENTER] to create a new program. Name the program using up to eight characters or numbers or
[image: image11.wmf]q

. Press [ENTER] to access the program editor where the program will be written. To access the program control and input/output menus and the commands they contain, press the [PRGM] key. These menu items will be discussed in the appropriate units. After writing the program, exit the editor by pressing [2nd] [QUIT]. Exiting the program listing is important since any calculation or function button will become part of the program

· To edit a program

Press the [PRGM] key to access the program menu. Select EDIT, select the program you want to edit and press [ENTER] to edit the selected program. A program can also be selected by pressing the number beside the program in the [PRGM] menu. Students writing program code will get into a run-edit-change-run cycle. Encourage the use of the pressing the number method.

· To edit existing programming lines
Use the [DEL], [INS], or [CLEAR] capabilities to delete or insert characters in program lines or to add or delete entire program lines. Note: inserting blank lines is a good method of making code paragraphs and making the code more readable.

· To execute a previously written program from within a program

From within the program listing, use the [PRGM] button and choose the [EXEC] menu. What will appear is a list of all the current programs available on the machine. Simply choose the desired one and when the main program is run the subprogram will be executed when the line that calls it is reached. This capability gives the programmer the ability to reuse code in many different programs and not have to retype common routines into every program. For example: It is easy to write a short program called HITENTER that will pause until the [ENTER] is hit and then clear the screen. From then on it will never be necessary to write those lines again. We have increased that machine’s vocabulary to include the command HITENTER. Now in any other program when we want to pause until [ENTER] is hit and then clear the screen, all we have to do is call HITENTER. It is important to realize that all variables are global so that if a subprogram changes the value of a variable it changes it for the entire program and any other subprograms. Therefore variable naming is very important. If a routine that is being written to be reusable uses some rarely used variables so as to have no side effects on the main program.
Reusable code is an important concept in programming. While the idea of modularity might be beyond the scope of this course, the idea of reusable code is not. If the course concept includes developing more efficient problem solvers, it will be important to develop conventions for naming variables to be used in reusable routines so that they do not conflict with main program variables.

Input and Output

I.
SOL: COM.6, COM.7, COM.9, COM.10, COM.11, COM.12

II.
Overview

Before more complex challenges can be undertaken, the student must understand how to label locations in memory, get data into the memory locations, and print data and messages on the screen. This unit will begin with displaying text on the screen. Students will learn how the programmer can assign values to variables in the program or ask the user to input data and the program then displays the data on the screen. The Formulas Unit will cover manipulation of data and variables.

III. Points of Emphasis

The following commands from the PRGM I/O menu will be introduced:

Disp “text”
Will display a text message with a maximum of 16 characters (TI83+). Text is displayed on the left side of the screen.

Disp value1, value2,…,valueN

Will display constants on the right side of the screen. These values can be constants (2,5.5, etc.), expressions (7/2.5), or variable names that represent memory locations that store values.

Disp “text1” , value1,value2,”text2”,valueN
 Text and values can be mixed together in the Disp command. Text is displayed on the left of the screen and values on the right.

Output(row, column, “text”)
Use the Output command to display text at a specific location on the screen. The row must be 1-8 and the column must be 1-16. To clear the screen use ClrHome.

Output(row, column, value)
Use the Output command to display a value at a specific location on the screen. The row must be 1- 8 and the column must be 1-16. To clear the screen use ClrHome.
ClrHome Will clear the home screen.

Pause
Pauses execution of the program. To resume execution, press ENTER. The Pause command is listed on the PRGM CTL menu.

STO►
The STO button is used to store data into memory. The expression is on the left and the variable is on the right. The variable name is limited to a single letter.

Input
This command by itself will display the current graph and wait for you to move the cursor to the desired location. Press [ENTER] to input the coordinates of the selected point.

Input variable
The Input command followed by a variable name will display a question mark and pause for the input from the keyboard.

Input “prompt”, variable
The Input command followed by a text prompt and then a variable will display the prompt on the screen, then pause for the input from the keyboard.

This unit needs to include a discussion of variables and access to memory locations (COM.9, COM.10). To supplement this overview, refer to any programming text or reference. The handling of variables is similar in most programming languages. Students must understand that variables in programming are not the same as variables in other mathematics courses. A variable is traditionally defined in mathematics courses as a symbol that represents an unknown value. In programming, a variable is a name given to a location in memory. It makes sense to write x + 1 ► x. This does not mean that x + 1 is equal to x or that one should solve for x. It simply tells the computer to take the value stored in the memory location called x, add 1 to it, then store the resulting value into the location called x. In programming, variables are used to store and retrieve data, but not to solve for a variable. Variable names must be a single letter.

The scope of a variable is the portion of the program in which the variable can be used. Variables are referred to as local, existing only within the program or subroutine in which they are written, or global. Global variables can be accessed by any program or subroutine. On the graphing calculator, all variables are global. The advantage is that a variable created in one program can be accessed by other programs. This is useful in the unit on subroutines where a project may have several subroutines that must access the same data. The disadvantage is that the programmer must insure that two subroutines in the same project do not use the same variable name. The forms used to document programs will help keep track of the variables used in order to avoid confusion.

There are several types of variables, each used for different types of data. The numeric types include integer and real number. Non-numeric types include character (a single letter), string (words and other text data), and Boolean (either true or false). Graphing calculators only use real number variables for numeric data and string variables for text data. The numeric variables can be identified with a single letter. String variables can be found by pressing [VARS] and selecting option 7: String. Data assigned to string variables must be inside double quotes (see the example program in activity section).

Formatting numeric output can be accomplished in several ways. The settings for MODE, FORMAT, and WINDOW can be programmed. In the example program in this unit, the numeric data is set to display to 1 decimal place. This is done in the program by pressing [MODE], highlighting the desired setting, and pressing [ENTER]. Another method for formatting numeric data is using the round(value, # decimal places) function found in the [MATH] [NUM] menu. The command would be DISPLAY round(x,2). To display values as a fraction, use option 1 in the MATH menu,
[image: image12.wmf]®

Frac

. The command would be

DISPLAY N
[image: image13.wmf]®

Frac

. The resource Introduction to Programming on the TI-83 has a thorough explanation of this topic in Exercise 1: Defining Environment.
IV.
Methods

Several activities will be used to input and display text and values.
V.
Activities

Output activities:

The following can be accomplished in one program with several Disp commands separated by Pause when desired.

Display the message “Hello World.” on the screen.

Display the value 7.53 on the screen.

Display “My average is “ , 93.7.

Display “My average is “ , (99+87)/2.

Store the value 93.7 into a memory location called A, then display “My average is “, A.

Store the formula (99+87)/2 into a memory location called A, then display “My average is “, A.

Store a name into a string location and the formula (99+87)/2 into a memory location called A, then display Name, your average is A.

Store a name into a string location and store the value 99 in X and 87 in Y. Store the formula (X+Y)/2 in A, then display Name, your average is A.
Sample program for last activity:

Fix 1

"TERRY" ► Str1

99 ► X

87 ► Y

(X+Y)/2 ► A

Disp Str1,"YOUR AVERAGE IS ",A

The output would be:

[image: image14.png]
Input activities:

Go back through the previous activities. Ask for the input rather than assigning it from within the program. For example, the last activity’s program would become:

Fix 1

Input "ENTER YOUR NAME ",Str1

Input "FIRST VALUE ",X

Input "SECOND VALUE ",Y

(X+Y)/2►A

Disp Str1,"YOUR AVERAGE IS ",A
Formulas

I.
SOL: COM.1, COM.2, COM.3, COM.4, COM.5, COM.6, COM.7, COM.9, COM.10, COM.12, COM.13, COM.18, COM.20

II.
Overview

Writing programs involving formulas provides a bridge between this course and discussions of formulas and variables that took place in previous mathematics courses. Programming will allow students to instruct the device to substitute the assigned values for the appropriate variables and simplify the expression. By doing this, students can program the device to accomplish the tasks that may have caused them difficulty in previous mathematics courses. Their programming skills and the capabilities of the device will allow them to explore areas where their mathematics skills might not have allowed them to be successful.

III.
Points of Emphasis

KEEP IT REAL! Formulas should not be used just for the sake of using them. If the teacher cannot determine a situation in which someone would actually use the formula in their personal or occupational life, the teacher should consider not using it. If the students can make a connection between the formulas and their lives, they are more likely to want to write the program and less likely to ask, “When am I ever going to use this?” A consumer or business mathematics resource may be more valuable than a stack of algebra worksheets.

IV.
Methods

Present a challenge that could occur in one’s personal or occupational life. The appropriate formula can be provided to students or students could be asked to determine an appropriate formula. Students will describe the pre-conditions, post-conditions, desired output, and test data (COM.2, COM.3, COM.18). Students will write the tasks to be performed using pseudo code and place the tasks in their order of execution (COM.4, COM.5). The correctly ordered pseudo code should be translated into a flowchart. Input can be obtained by assignment statements or by input statements with appropriate prompts (COM.6). The data should be processed using the formula and the results displayed in a user-friendly form (COM.7, COM.12, COM.13). Students may need to manipulate the formulas to get them in useable form. For example, students may be given the formula for converting Fahrenheit to Celsius,
[image: image15.wmf]C

=

5

9

(

F

-

32

)

, then asked to write a program to convert Celsius to Fahrenheit.
V.
Activities

There are many formulas that can be used in this unit. These are examples of formulas that might be used. Do not feel that all of these formulas must be used in this unit. There will be many opportunities to use any remaining formulas in future units. For example, one can calculate total pay for five employees using a for loop in the Loops Unit. One could calculate total pay for an unknown number of employees using a while loop. Any formula projects in this unit could be expanded and improved in future units. Each of these formulas could be used for several projects by changing the variable of interest. For example, the simple interest formula
[image: image16.wmf]I

=

prt

 can be used in several ways:

1) Calculate the interest earned by investing $1,000 at 5% for 10 years.

2) Calculate the amount to invest if you need to earn $500 in 10 years at 5% interest.

3) Calculate the interest rate required to earn $500 on a $1000 investment in 10 years.

4) Calculate the number of years to earn $500 on a $1000 investment at 5% interest.

There are as many variations on a formula as there are variables. If there are four variables, devise a problem where the student is given three of them and solves for the fourth and students practice solving literal equations. They also have an opportunity to explore the world outside of the classroom by discovering what interest rate could be expected for various investments such as saving accounts, savings bonds, government bonds, corporate bonds, and stocks. They can discover that an investment with a 10% return doubles every seven years. Have the students ask for the user’s name and refer to the user by name in the output. They will practice dealing with string data and the program will be more user friendly. Be creative and discover more formulas and new applications of these formulas:

[image: image17.wmf]C

=

5

9

(

F

-

32

)

 and
[image: image18.wmf]F

=

9

5

C

+

32

Convert between Celsius and Fahrenheit. Be creative. Rather than asking the students to convert
[image: image19.wmf]25

0

C to Fahrenheit, state the problem as, “In planning a trip to Canada, we found that the average high temperature at the time we will visit is
[image: image20.wmf]25

o

C

. What type of clothes should we pack? Why?”

Convert between metric and customary measures. Example: If an engine holds 4 quarts of oil, how many liters will it hold? How many millimeters are there in
[image: image21.wmf]1

2

 inch?

Compute the amount of sales tax and the total cost when given the unit price, quantity of each item purchased, and the sales tax rate. Example: If a consumer buys 5 items that cost $1.17 each and the tax rate is 4%, determine the amount of the tax and the total cost.

Compute the amount of commission and total pay when given the percent of commission and the amount of sales. Example: If a salesman earns 7.5% commission on $815 in sales, determine the amount of the commission.

Compute total pay when given hourly pay rate and the total hours worked (40 hours or less). Example: If a worker earns $6.50/hour and works 35 hours, determine the total pay.

Compute overtime pay, regular pay, and total pay when given the hourly pay and total pay (over 40 hours). Example: If a worker earns $7.77/hour and works 48 hours, determine the total pay.

Compute amount of tip when given the amount of the bill. Note that 15% could be used as a constant and the bill as a variable to illustrate the difference between constants and variables. Example: If the bill at a restaurant is $32.15 and the customary tip is 15%, how much should be left as a tip?

Compute the amount of Social Security withheld from a paycheck when given total pay. Example: If Social Security withholding is 7.5% of gross pay, how much is withheld from a worker who earns $7.25/hour and works 40 hours in one pay period?

[image: image22.wmf]I

=

prt

 Compute simple interest when given the principal (p), the interest rate (r) and the number of years (t). Example: If an investor can invest $2,500 at 6.5% interest for 3 years, how much interest will he earn and what will the total balance be at the end of that time? Example: If you borrowed $6,750 at 11% interest for 4 years, how much interest would you pay and what would be the total amount to pay off the loan.

Compute unit price and determine the better deal, given several packaging options and the cost of each option. Example: Which is the better buy, 6 for $2.57 or 24 for $10.11? How much is saved?

How much more does it cost to purchase an item on an installment plan compared to paying cash? Example: How much more does it cost to purchase a $524 item on an installment plan of 12 payments of $48 rather than paying cash at the time of purchase?

Compute the total cost of renting a car when given the daily cost, the cost per mile, the number of days, and the total miles. This can be enhanced by allowing a certain number of miles free for each day and charging for any additional miles over the allowance. Encourage students to contact rental companies and get their fee structure. Example: What is the total cost to rent a car for 4 days and drive it 520 miles if the rental car company charges $25 per day and $0.20 per mile? Is it cheaper to use another company that charges $30 per day but allows 100 free miles each day and then $0.20 per additional mile over the allowance?

Compute the maximum recommended monthly mortgage payment using the generally accepted guideline that the payment should not exceed 28% of income. A second guideline states a mortgage payment combined with any other debt payments should not exceed 36% of income. Example: Using the two guidelines, what is the maximum recommended monthly payment for a family earning $30,000 per year with a car payment of $150 per month. Calculate the average of the two methods.

Compute the cost of carpeting a room when given the length and width of the room and the cost per square foot (or square yard) of the carpet. Other examples can involve surfaces that are circles, triangles, or other shapes. Example: If carpeting costs $30 per square yard, what is the total cost to carpet a room that is 17 feet by 14 feet?
Compute the number of gallons of paint needed to paint a room when given the dimensions of the room. Example: Compute the cost of the paint given the cost per gallon. If paint costs $25 per gallon and each gallon covers 400 square feet, how many gallons of paint must be purchased and what would the total cost be to paint a room that is 25 feet by 40 feet with 9 foot ceilings?

Compute the volume of solids to determine their capacity to hold various substances. Example: What is the volume of a can that is 5 inches high with a diameter of 3 inches? What is the circumference of the base?

Compute the cost of materials to make various objects (spheres, cylinders, et cetera) when given the required data and the cost of one square unit of the material used to construct the object. If the material to make the can in the preceding example costs $1.25 per square foot, calculate the material cost for one can.

According to statistics, a graduate makes 42% more than a dropout. If a person is offered a job at $8.50/hour for 40 hours a week if they will drop out of school, how much more money would they make in a year if they stayed in school and graduated? How much more would they make in their lifetime if they stayed in school rather than drop out? Are the results significantly different if you allow for the possibility that the drop-out may have worked 2 or 3 more years than the graduate since the drop-out started working earlier?

Sales Tax

Project Description

Ask the user for the amount of the sale and the percentage sales tax. The program should calculate and display the amount of the sales tax and the total amount of the sale. If the sales tax is 4.5%, have the user enter 4.5 rather than 0.045. This should be more user friendly since the user does not have to convert the percent to a decimal. It should also be more accurate since we can program the calculator to convert 4.5% to a decimal by dividing by 100 in our formula with 100% accuracy. This same accuracy may not be expected if the user had to do the conversion.

Program ____Sales Tax____________________________ Name________________________

Period ____________

 Date ___________________

[image: image65.wmf]
Restate the problem in your own words:

[image: image66.png]
[image: image67.png]
What is the desired output?

[image: image68.png]
[image: image69.png]
What information have you been given?

[image: image70.png]
[image: image71.png]
What formulas are needed?

[image: image72.png]
[image: image73.png][image: image74.png]Solving Plan

Test Data

[image: image75.png][image: image76.png]
[image: image77.wmf]

 What improvements could be made?
Sample Program

Fix 2

Input "ENTER YOUR NAME ",Str1

Disp "HELLO ",Str1

Input "AMOUNT OF SALE ",S

Input "TAX AS PERCENT ",R

S*R/100►T

S+T►A

Disp Str1,"TAX IS ",T

Disp "TOTAL IS ",A

The output would be:

[image: image23.png]
[image: image24.png]
Conditionals

I.
SOL: COM.1, COM.2, COM.3, COM.4, COM.5, COM.6, COM.7, COM.9, COM.10, COM.12, COM.13, COM.14, COM.18, COM.20

II.
Overview

Conditionals use the If command and change the flow of the program by executing a set of commands only if a condition is true and skipping them if the condition is false. Some commands may be executed if a condition is true and other commands if the condition is false using the If…Then…Else control structure. This unit primarily focuses on COM.14, which states that “The student will implement conditional statements that include “if/then” statements, “if/then/else” statements, case statements, and Boolean logic.” The programming limitations for using conditionals on the graphing calculator involve case statements (also known as multiple selection control structures). Unlike other languages, such as Java and C++, the graphing calculator may not be capable of supporting multiple selection commands such as switch…case, and else…if. These tasks can still be accomplished by employing multiple If statements. The disadvantage of using a series of If statements is lack of efficiency. For example, a program that would print the letter grade when given the arithmetic mean would evaluate the condition for every grade possibility every time, even if the first condition had been true. The series of If statements can be modified to achieve the same efficiency as the traditional case statements by using the Goto and Lbl commands. An example strategy is listed in the Activities section below.
III.
Points of Emphasis

KEEP IT REAL! Conditionals should not be used just for the sake of using them. Develop real situations where If and If…Then…Else control structures are appropriate. Several examples are listed in the Activities section below.

The new commands for this unit can be found in the PRGM CTL menu, and accessed while writing programs by pressing the PRGM button. The CTL menu is the default menu since it is the first menu option. New commands for this unit are:

If is used to create a single selection control structure. The If command is followed by a condition which can be determined to be true or false and is also referred to as a Boolean test. This differs from a Boolean variable, which is available in many programming languages but not on most graphing calculators and stores true or false as its data. If the condition is true, control goes to the next command and it is executed. If the condition is false, the next command, and ONLY the next command, is skipped and control will go to the following command. For example:

Input “AVERAGE=”, A

If A≥70

Disp “YOU PASSED.”

Disp “STUDYING REALLY HELPS.”

Disp “GOOD LUCK NEXT YEAR.”

If the value 85 is entered, the result will be:
YOU PASSED.

STUDYING REALLY HELPS.

GOOD LUCK NEXT YEAR.

If the value 65 is entered, the result will be:
STUDYING REALLY HELPS.

GOOD LUCK NEXT YEAR.

If-Then executes a group of commands rather than a single command. The Then command immediately follows If to mark the beginning of the group and the End command marks the end of the group.

Input “AVERAGE=”, A

If A►70

Then

Disp “YOU PASSED.”

Disp “STUDYING REALLY HELPS.”

End

Disp “GOOD LUCK NEXT YEAR.”

If the value 85 is entered, the result will be:
YOU PASSED.

STUDYING REALLY HELPS.

GOOD LUCK NEXT YEAR.

If the value 65 is entered, the result will be:
GOOD LUCK NEXT YEAR.

If-Then-Else creates a double selection control structure. If the condition is true, the commands following the then statement are executed. If the condition is false, the commands following the else statement are executed.
Input “AVERAGE=”, A

If A►70

Then

Disp “YOU PASSED.”

Disp “STUDYING REALLY HELPS.”

Else

Disp “YOU FAILED.”

End

Disp “GOOD LUCK NEXT YEAR.”

If the value 85 is entered, the result will be:
YOU PASSED.

STUDYING REALLY HELPS.

GOOD LUCK NEXT YEAR.

If the value 65 is entered, the result will be:
YOU FAILED.

GOOD LUCK NEXT YEAR.

The multiple selection control structure is handled in other programming languages, such as C++ and Java, with switch…case commands. Even though these commands are not available with the graphing calculator, the efficiency of the multiple selection structure can be modeled by using If-Then-End along with the following commands:

Goto label sends a command to the location in the program with the same label. For example, Goto Q sends control to the statement immediately following Lbl Q.

Lbl label label a location with the label name that can be any letter or any number from 0 to 99.

A complete multiple selection control structure using the graphing calculator would look like:

If A ► 93

Then

Disp “You earned an A”

Goto Q

End

If A ► 87

Then

Disp “You earned a B”

Goto Q

End

If A ► 79

Then

Disp “You earned a C”

Goto Q

End

If A ► 70

Then

Disp “You earned a D”

Goto Q

End

Disp “You easrned an F”

Lbl Q

Disp “The end”

The efficiency of the multiple selection is preserved since the program control skips over the remaining If statements and goes to Q whenever a true condition is encountered.

IV.
Methods

Present a challenge that could occur in one’s personal or occupational life. The appropriate formula can be provided to the students or the students could be asked to determine the appropriate formula. Students will describe the pre-conditions, post-conditions, desired output, and test data (COM.2, COM.3, COM.18). Students will write the tasks to be performed using pseudo code and place the tasks in their order of execution (COM.4, COM.5). The correctly ordered pseudo code should be translated into a flowchart. Input can be obtained by assignment statements or by input statements with appropriate prompts (COM.6). Input should be verified whenever possible and stored in the appropriate variable type (COM.9, COM.10). The data should be processed using the appropriate formula and conditional type and the results displayed in a user friendly form (COM.7, COM.12, COM.13, COM.14).

V.
Activities

These are examples of activities for conditionals that can be used:

If

Given three test grades, calculate and print the student’s average. If they have an “A” average, print “EXCELLENT JOB!!” If the student is failing, print “YOU ARE FAILING AND MAY NEED TO ATTEND SUMMER SCHOOL”.

Given any real number, print its absolute value. (If the number is < 0, then n = -n). An example of this would be to find the distance between two mile markers or exits on the interstate. What is the distance between exits 179 and 296? Calculate the difference. Then, If the difference is negative, multiply it by –1 to get the absolute value of the distance.

Input the student’s average and output the letter grade using the school grading scale.

If-Then

Given three test grades, calculate and print the student’s average. If the student has an “A” average, print “YOUR AVERAGE IS _____.” On the next line print “EXCELLENT WORK!!”

Input the mathematics and verbal scores of the SAT. If the score in either section is less than 200 or greater than 800, print an error message stating “ERROR. INPUT IS OUT OF BOUNDS.”

Example:

Input "ENTER MATH SAT ",M

Input "ENTER VERBAL SAT ",V

If M<200 or M>800 or V<200 or V>800

Then

Disp "ERROR. INPUT IS "

Disp "OUT OF BOUNDS"

End
If-Then-Else

Given three test grades, calculate and print the student’s average. Print the appropriate message “YOU PASSED” or “YOU FAILED”.

Input the numerator and denominator of a fraction. Print the decimal equivalent of the fraction. (If the denominator is zero, the value is undefined. Else, the value is numerator/denominator.)

Ask the user to input their name and password. If they match the name and password in the program, welcome them, otherwise, deny them access.

Example:

Input "ENTER YOUR NAME ",Str1

Input "ENTER PASSWORD ",Str2

If Str1="JENNIFER" and Str2="JLO"

Then

Disp "HI JENNIFER"

Else

Disp "ACCESS DENIED"

End
Notice that the condition for String data must have the data in double quotes.

Input the hours worked and the pay per hour. If the number of hours is less than or equal to 40, calculate the pay using the formula: total pay = hours * pay per hour. For everyone Else use the formula total pay = 40 * pay per hour + (hours – 40) * pay per hour * 1.5

Multiple selection using If-Then with Goto and Lbl
Given three test grades, calculate and print the student’s numeric average and the appropriate letter grade.

Input “Enter test 1”, X

Input “Enter test 2”, Y

Input “Enter test 3”, Z

(X+Y+Z)/3 ► A

Disp “YOUR AVERAGE IS”,A

If A► 93

Then

Disp “A”

Goto Q

End

If A► 87

Then

Disp “B”

Goto Q

End

If A► 79

Then

Disp “C”

Goto Q

End

If A► 70

Then

Disp “D”

Goto Q

End

Disp “F”

Lbl Q

Disp “GOODBYE”

Notice that after checking for A, B, C, and D, it is not necessary to check to see if the average is an F because any average that does not make any of the previous tests true must be an F. Using If-Then with Goto and Lbl is more efficient that merely listing five If statements because the program stops testing as soon as it finds the appropriate grade. For example, an average of 85 will go through only two If statements before skipping the remaining If’s when control is sent to Q.

Overtime Project

Project Description

Ask the user for the hours worked and their rate of pay per hour. The program should calculate and display the amount of the regular pay, overtime pay, and total pay. Federal law requires that a worker’s hours in excess of 40 hours per seven day pay period must be paid at 1.5 times their regular rate of pay, what many people call “time and a half”.

Teacher Notes

Naming the variables can be confusing because several would probably use the same letter if possible (rate of pay and regular pay cannot both be called R). Most of the variables involve pay, but could not all be called P. Avoid using the letter O for overtime pay or any other variable because it looks like the number 0 (zero). Make sure the students document their variable name choices. The relational operators (< > ≤ ≥ = ≠) are in the TEST menu (2nd MATH). Assigned variables 0►V and R►T in the If portion allow the program to calculate or assign the appropriate values to R, V, and T and have one group of commands to display the output rather than reduce the number of calculations but have the output commands in two places, the if section and the else section.

Program ____Overtime____________________ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

Given the hours worked and the pay per hour, this program will calculate and display the regular pay, overtime pay and total pay.

What is the desired output?

Calculate and display the regular pay (R), the overtime pay (V), and the total pay (T)

What information have you been given?

Given the hours worked (H) and the pay per hour (P)

What formulas are needed?

If hours ≤ 40, H*P►R, 0►V, R►T

Else 40*P►R, (H-40)*p*1.5►V, R+V►T

Solving Plan

 Test Data

Input Hours Worked (H)

Input: H=30, P=7.50

Input Pay per Hour (P)

Output: R=225, V=0, T=225

If hours ≤ 40

Calculate Regular Pay

Input: H=48, P=6.5

Assign zero to Overtime Pay

Output: R=260, V=78, T=338

Assign Regular Pay to Total Pay

Else

Calculate Regular Pay

Calculate Overtime Pay

 What improvements could be made?

Calculate Total Pay

Display Regular Pay

Display Overtime Pay

Display Total Pay

Sample Program

Fix 2

Input "HOURS WORKED:",H

Input "PAY PER HOUR:",D

If H≤40

Then

H*D►R

0►V

R►T

Else

40*D►R

(H-40)*D*1.5►V

R+V►T

End

Disp "REGULAR PAY IS ",R

Disp "OVERTIME PAY IS ",V

Disp "TOTAL PAY IS ",T

The output will be:

[image: image25.png]
[image: image26.png]
Loops

I.
SOL: COM.15

II.
Overview

Loops allow computers to perform repetitive tasks quickly and accurately. Computers go about their job indefinitely with no loss of speed or accuracy and loops allow the rapid solution to both complex problems and problems that are not so complex but require a large number of repetitions.

III.
Points of Emphasis

There are three main types of loops. Different types of problems require the special features of one type of loop over another. One of the important skills needed by a programmer is the ability to decide when a loop is needed and which type of loop would be most efficient.

The decision on whether or not to use a loop structure is usually an easy one. If you have to do the same job more than once, there has to be a better way and that way usually involves using a loop. Students should be encouraged to “work smart” and not waste time redoing a job that could be handled with a loop.

The three types of loop structures are iterative, pre-test, and post-test. Each has its place in the programmer’s toolbox.

Iterative Loops or counting loops are the most basic type of loop and are used when the number of times a task is to be done is known or when the first and last value of a variable along with the size of the increment from first to last is known.

Syntax of an Iterative Loop

For(variable, first, last, step)

Body of the loop

End

The example program prints out the numbers for 1 to 10 by 1’s down the screen. The For command is found when one is in the Program Editor and hits the PRGM button, then selects the CTL menu, and choice #4 [For(]. The X is the loop control variable that is used to decide when the loop is to terminate. The next three quantities in the command, first, last, and step control the loop control variable. first(the first 1) is initial value the loop variable takes on. When the value of the loop control variable reaches or passes last (the 10) the loop will terminate. step(the second 1) is the size of the increment of the values the loop variable will assume in getting from first to last. The For statement in the example means “X will start at 1 and go to 10 in increments of 1”.

The body of the loop (Disp X) is simply the task(s) that are to be done more than once and can be one line, or many lines, of code. The only limit to the number of lines in the body is the RAM available in your calculator.

The End command marks the bottom of the loop and acts like a recycle switch, sending the program execution back to the top of the loop to add on the step and to test the loop control variable to see if it has gone past last yet. If it has not, then the loop is executed again. If it has, then program execution is jumped to the first command below End.
In the above example, the flow of the program would be:

1. Display the message “ 1 to 10”

2. Skip a line

3. Set X=1

4. Display the value of X

5. Add 1 to X

6. Has X gone past 10?

7. Answer: No, Go to step 4

8. Answer: Yes , Stop

The main rule is: If first is larger than last, then step must be negative. Alternatively, if the program is going “down to,” it must use negative steps to get there. To count backwards from 10 to 1 by 2’s, the program would look like :

Notice that the last value of x that will be printed is 2 since the next value of x would be 0 and that is past 1 and the loop terminates.

An iterative loop becomes non-loop if the step has the wrong sign. The program looks at first, last and step and says “Wrong” and does not execute the loop at all. In other words, the calculator is too smart to get into an invalid loop.

Pre-Test Loops ask the “do I do this loop” question before executing another trip through the loop. As program control reaches the top of a pre-test loop it tests a do condition and if the answer is yes, the loop is executed. If the answer is ‘no,’ control is passed to the next line after the bottom of the loop. This positioning of the question leads to the possibility that the loop might not ever be executed.

Syntax of a Pre-test Loop:

initial value of loop variable

While condition
body of loop

update loop varible

End

The loop control variable should have an initial value before the loop begins. This can be done with a STO command or by inputting a value before the loop. In the example, the 2 ► X assigns a value of 2 to X before the loop starts. The programmer must be aware of the value of the loop variable before the start of the loop, since it is possible that the loop might not be executed if the value does not meet the While condition.

The While condition is actually a “I want to do this loop if this is true” condition. As long as the condition is true, the loop will be executed. When the program reaches the top of the loop, it tests the condition and, if the answer is true, the body of the loop is executed. Care must be given to the condition since a faulty condition can lead to an infinite loop or to the loop never being executed. As in the For-loop, the End statement marks the bottom of the loop and control is passed back to the top of the loop for testing the While condition.

One key difference between the For-loop and the pre-test and post-test loops is the way the loop control variable is updated. In a For-loop, the value of the loop variable is automatically updated by the step parameter every time the loop reaches the bottom. In both the pre-test and post-test loop, the programmer must add a line of code that will change the value of the loop control variable. Usually this updating of the loop variable is done with a STO command, like X+1 ► X, or with some other newly calculated value for the loop variable. Sometimes the loop variable is updated when the user enters a new value for the loop variable. It is important that this updating take place, because if the value of the loop variable is always the same then the While condition will always be the same and the loop will never terminate on its own.

Post-Test Loops are similar to the pre-test loops in that the loop variable must be initialized before the loop begins and must be updated within the body of the loop. There are two main differences between the loops. The first is the position of the decision about recycling through another iteration of the loop. In a post-test loop the question is asked after the body of the loop has been executed instead of before as in the pre-test loop. The second is in the way the “do it again” condition is written. In a pre-test (While) loop, the condition is a continuing condition (Keep doing this loop While X is less than 10). It is written so that if the result of the condition is true, the loop recycles. In a post-test loop (Repeat), the condition is an exit condition (Repeat this loop until X is greater than or equal to 10). The positioning of the recycle condition in the post-test loop guarantees that the loop will be executed at least one time.

Syntax for a Post-Test Loop

Initialize the loop variable

Repeat condition
body of loop
update the value of the loop variable
End

In the example, the loop control variable, X, is initialized to 1 and the loop is started. A 1 is displayed and 2 is added to the value of X making it a 3. When the End statement is reached, the question, “Is it time to quit (Is X≥ 10)?” is asked. Since 3 is not greater than or equal to 10, the loop does not quit and recycles. This time it prints a 3 and adds two more making 5. “Is it time to quit?” Recycling through the program continues until the value of X is 9. “Is 9 greater than or equal to 10?” The program prints 9 and makes X equal to 11. This time when the condition is tested, 11 is greater than or equal to 10 and the loop ends.

In a post-test loop, the loop control variable should have a starting value. This is usually done by using a STO command (1 ► X) or by inputting a value for the loop control variable. The Repeat condition is placed at the top of the loop even though the condition is not checked until the end of the loop. The condition is a Boolean statement that is evaluated as true or false. The condition is thought of as an exit condition. When the condition is true, program execution exits the loop. The body of the loop is whatever the program needs to do at least once. Somewhere in the body of the loop, the value of the loop control variable must be updated or the loop will go on forever. This updating can be done by calculating a new value for the loop control variable using a STO statement or the loop control variable could get a new value from the user by using a Prompt or Input statement or a combination of both methods. In any case the variable’s value must be changed if the loop is to terminate on its own. The End statement marks the bottom of the loop and evaluates the exit condition to decide if control is passed back up to the top of the loop at the Repeat statement if the condition is false, or on to the rest of the program if the condition is true.

One common use of Repeat loops is to guarantee valid user input. Often if the values supplied from the keyboard are not within a legitimate range, the program will “bomb” or yield ridiculous results. With good use of loops, the program can keep asking the user for a value until he/she gives one in an acceptable range.

In the example to the right, the user is asked for a non-zero number, but enters 0 anyway. The program evaluates the exit condition of x not being 0 and since it is false recycles the loop and asks for another number. Once a valid number is entered, the exit condition is true and the program continues and displays the inverse of the number entered as a fraction.

Which Loop is Best?

Each of the three types of loops has strengths and weaknesses. Choosing the best loop for a particular job is an important skill. In most applications it is possible to use any of the three. However, select the wrong one and it is often necessary to add extra lines of code to compensate for the more inefficient selection.

The first rule of thumb is If you can use a For-loop, use it. For-loops are easy to set up and control. If it is possible to know the starting value and the ending value of a loop control variable or if one knows how many times a loop is to be executed, then use a For-loop.

When the number of iterations a loop will need is not known, then it is necessary to use a While-loop or a Repeat-loop. The difference between the two loops is, for the most part, personal preference. Both types of loops can be made to do most jobs. A good programming exercise is for students to convert While-loops to Repeat-loops and vice-versa.

Repeat-loops are better when error-trapping user input, since the loop is guaranteed to be executed at least once and, if the input is valid, the user never knows they are in a loop. While-loops are better in a situation where the loop might not need to be executed at all (in a credit card program where the interest is calculated, payment received, and new balance calculated only while the balance is greater than zero).

IV.
Methods

Loops a
Loops are a concept that must be visualized and internalized before they can be used effectively. To do so, the student needs practice producing loops that meet problem specifications. They need to be able to modify an existing loop to meet a change in the original problem. To achieve this, start by giving students a program that they have not seen that has the new material to be covered. Before the program is run have the students guess what the program will do. Brainstorming can be either formal, on paper, or informal as part of a class discussion. It is important that students learn to analyze the lines of codes that they do understand and make intelligent conjectures about the ones to which they have not yet been exposed. To improve this skill, the classroom must be a positive place that allows a student to be wrong without losing esteem.

For-loops

I like tI
Give students a program with a simple For-loop (such as the one below) and before it is run, ask them to guess what the program will do. After a guess or two, have students enter and run the program to see what it does.

Next it is necessary to see what each of the parameters in the statements control within the loop. Try changing the number in the second slot to 2 and run the program. How about 7? How about 12? What happens in each case? After as many experiments as necessary, have students devise a statement about the rules for the number in the second slot.

Then move on to the third slot. Change the value and have the students observe what happens. Try 12. Try 20. Try –4. Again, formally write the rules about the number that goes into the third slot.

Move to the last slot and repeat the process of varying the numbers that go there. Make sure that students try decimals and negatives. Having students see all the intricacies of this parameter may take more examples than before.

Now
Now that the “class rules” for the slots have been written, the teacher can start to pose problems, have the students program the loop, and show the teacher the results. Slowly make the problems more difficult, getting to the counting “down to” problems. Make sure that there are plenty of examples of this type. The 10 9 8 7 . . . 1 0 BLASTOFF program is a good programming exercise to demonstrate what goes inside the loop and what goes outside.

Onc
Once the class has a good feel for the controls of the For-loop, it is time for the next step. Have the students modify their program to print their initials five times on the screen. This sometimes takes a little discussion to see that the loop variable is just counting how many times the body of the loop gets done.

Another good problem is to have students pick a number and assign it to a variable (not X). Then have the program double the number five times and print the final result. This also makes the student decide what needs to be done five times and what needs to be done only once. Some students go loop crazy. As soon as they decide that a problem needs a loop, they tend to put everything in the body of the loop. It is important that concepts and rules of For-loops be thoroughly mastered before moving on to the other types of loops, since the other two types all have characteristics similar to the For-loop.

While-loops

It is important that students have a basic understanding of the controls of a While-loop. Again, start the students off with a simple example of a While-loop, such as the following:

After a discussion of what the program will do, have the students run the program. Start changing parameters. What happens if students change the 2 to 4? to 9? to 15? What happens if students take the 2 ►X line out of the program? Take the time to do several different examples. Then develop a “rule” for the __ ► X line that is acceptable to the class.

The next place to go is the update line (X+1 ► X). What happens if students change the 1 to 2, to 3, to 6, to 9? What happens if a negative is added? What happens if the line if left out of the program? (Hold down the ON key to stop the loop) What happens if the line is moved before the Disp X line? What happens if it is moved to after the End? Develop a rule for the line that updates the loop variable.

The While condition is the key to the entire loop. This experiment needs to be done systematically. First change just the number 10 to different numbers. After a good feel for the change has been developed, change the < to ≤ . Play with the 10 to show that sometimes the last number is printed and sometimes it is not. Then change the < to > , = , and ≠ . Since loops should follow the study of conditionals and Boolean statements, the condition should make sense to the student.

Move to writing while-loops to meet specific problems, starting with relatively simple ones (print the numbers from 10 to 20 by 3’s). Progress to more complicated problems (print out the multiples of 7 less than or equal to 50 and count backward from 100 by 10s until you get to 0.) Do not shortchange this part. Pure repetition will hone the skill. Try doing the same programs that were done with a For-loop with a While-loop. Are they harder or easier? Do some make more sense written as a While?

Repeat-loops

The same approach employed teaching the For and While loops should be used to illustrate the key points of Repeat-loops. Start with the program below and have students modify the various parts until they can put together a good set of “rules” about the parts of the loop. Progress to creating loops that meet specific programming needs and move to more complex examples.

Tie It Together

Once all three types of loops have been thoroughly examined and practiced, the next step is to tie the types of loops into the idea of selecting the best type of loop to solve a problem. This can best be accomplished by doing a number of problems where the student must first select and make a logical case for the type of loop chosen before attempting to program the loop. Develop a consistent set of questions to lead the students’ thought-process though the decision.

Present the problem. Discuss the specifications of the problem. What is getting done more than once? Do you know how many times it needs to be done? Do you know the starting and ending values? If the answer is ‘yes’ to either question then it’s a For loop. If not, it is a While or a Repeat loop. What is the stopper for the loop? What is the first value of the loop? The choice between While and Repeat loops will often be in the “feel” of the problem. What is the easiest way to think about the exit condition? Is it easier to think about doing the loop “while x is less than or equal to 5” or “repeating the loop until x is greater than 5”? For most problems, there is little difference in the merit of a While loop over a Repeat loop or vice versa.

A very worthwhile set of exercises with loops is to convert loops of one type to the other two types. Doing so will add to the understanding of the four parts of each loop (a starting value, an exit condition, a method of updating, and the body of the loop). Using this approach will lead to a discussion of which type of loop is easiest to program and which is easiest to understand logically. These discussions are on a much higher plane of thought than simple debugging issues.

V. Activities

For-loop Worksheet

Name____________________

1. Enter the program on the right, but do not run it yet.

2. What to you think the program will do? (Answer in complete sentences.)

3. Run the program. Fix any errors. What did it do? (Answer in complete sentences.)

The only new line is the For(X, 1, 10, 2). Let’s take it apart and experiment with it. First we will play with the number in slot 2, the 1.

4. Change the 1 to 2 and run the program. What happens?

a. Repeat the process by changing the first number to 5?

b. How about 8?

c. What happens if we change it to 12?

 d. What is your best guess about what the number in slot number 2 controls? Come up with ‘rule’ that we can use to teach the class. (Sentences again)

Next we will try to find out what the 10 controls in the program. First change the number in the second slot back to 1.

5. Change the 10 to 5. What does the program do?

a. What happens if we change it to 3?

b. What happens if we change it to 50?

c. What happens if we change it to -5?

d. What is your best guess for what the number in the third slot of the For line controls? Write a ‘rule’ to teach the class how to use that number.

Now, let’s look at the number in the last slot of the command. First change the other two numbers back to 1 and 10.

6. Change the 2 to 1. What happens?

a. Now change it to 2? What happens? Notice where it stops.

b. Change it to 5. What happens?

c. Change it to 10. What happens?

d. Change it to –2. What happens?

e. What is your best guess for what the last number does in the For line? Come up with

 a rule for the class on how to use the fourth slot.

7. Suppose you wanted a program that will print out all of the positive multiples of 11 less than

 100. Write the program on paper and then enter and run it.

8. Suppose you wanted a program that will print out all of the positive numbers less than 10

 backwards, 10, 9, 8, 1. Write the program on paper and then enter and run it.

Occupational and Consumer Applications

I.
SOL: COM.1, COM.2, COM.3, COM.4, COM.5, COM.6, COM.7, COM.9, COM.10, COM.11, COM.12, COM.13, COM.14, COM.15, COM.16, COM.17, COM.18, COM.19, COM.20

II.
Overview

At this point in the course, all of the SOL have been introduced, but there is a big difference between a skill that has been introduced and a skill that has been mastered. This unit will tie previously introduced skills together using more comprehensive challenges that COM.1 refers to as “… arising from consumer, business, [and] other applications in mathematics.” These projects allow for further practice and give the programmer the opportunity to combine skills that, heretofore, have been used individually.

III.
Points of Emphasis

KEEP IT REAL! Try to come up with your own challenges and encourage students to do the same. (Yesterday, I found myself deciding if I should buy mulch by the scoop at $22 per cubic yard and a delivery fee of $25 OR buy bags of mulch that cost $2.75 for 2 cubic feet with no delivery charge). What is the break-even point between these two options? This would be a good programming project. The emphasis should be on devising comprehensive projects that use many skills and require a higher level of organization and problem solving than has been required heretofore in the course. Teachers will be afforded numerous opportunities for teachable moments and can discuss many topics with the class to get them to think about the situations rather than just cranking out rote solution as programs. Students will find it is easier to meet challenges if they understand them first. Students could write short papers, give brief presentations on topics, view appropriate videos, or even have guest speakers come to class.

IV.
Methods

Present a challenge that could occur in one’s personal or occupational life. The appropriate formula can be provided to the students or the students could be asked to determine the appropriate formula. Students will describe the pre-conditions, post-conditions, desired output, and test data (COM.2, COM.3, COM.18). Students will write the tasks to be performed using pseudo code and place the tasks in their order of execution (COM.4, COM.5). The correctly ordered pseudo code should be translated into a flowchart. This phase will be particularly important in these projects because they are more complicated and will involve several control structures. Input can be obtained by assignment statements or by input statements with appropriate prompts (COM.6). Input should be verified whenever possible and stored in the appropriate variable type (COM.9, COM.10). The data should be processed using the appropriate formula and conditional type and the results displayed in a user-friendly form (COM.7, COM.12, COM.13, COM.14).

V.
Activities

These are examples of activities that might be used:

Compound Interest - Input the principal, interest rate, time in years, and the number of times interest is compounded annually. Validate that the input values are all positive. Calculate and print the period number, the interest earned for the period, the ending balance. The period number refers to the block of time that corresponds with the number of times the interest will be compounded. For example, if interest is compounded quarterly for five years, there will be four periods per year for a total of 20 periods that we will number from 1 to 20. Keep repeating this until the user enters data indicating they want to quit the program.

Proposed Strategy - For illustration purposes, use the following variables:

P-principal

R-interest rate

C-number of times interest is compounded annually

T-time in years

I-interest earned

B-ending balance

N-number of periods.

Initialize the ending balance P►B.

Use a For loop to count N from 1 to C*T.

Each time through the loop calculate B*R/C ►I and B+I►B.

Print N, I, and B on the screen.

Use the Pause command after each pass through the loop.

Ask the students to explain why the interest increases each time it is calculated. How does compound interest compare to the simple interest project in the Formulas Unit?

Compound Interest – Calculate the ending balance using the formula
[image: image27.wmf]A

=

P

1

+

r

n

æ

è

ç

ö

ø

÷

nt

 where A is the ending balance, P is the principal, r is the interest rate, n is the number of times compounded annually, and t is the time is years. Does this program yield the same result as the previous Compound Interest program? What are the advantages and disadvantages of each method?

V6 or 4 cylinders? – Calculate the additional cost of gas for a V6 engine versus a 4-cylinder engine over 100,000 miles. Have the students estimate or do research to determine the miles per gallon for each option on a particular car model. Your program will need to input this data as well as the cost of one gallon of gas. Have them research how much more the V6 engine costs to buy initially? Is it worth it? Why?

Vertical Distance:
[image: image28.wmf]y

=

-

16

t

2

+

v

0

t

 Use this formula where y is the vertical distance of an object after t seconds with an initial velocity of
[image: image29.wmf]v

0

. Offer a menu of the following choices:

1) Find height

2) Find velocity

3) Find time

4) Time to ground

5) Find maximum

6) Quit

· The program should validate the input to insure that it is a number between 1 and 6. Once the selected menu item has been executed, the user will be asked to make another choice. This will continue until they select choice 6) Quit.

· The first choice will calculate and display the height of an object at a given elapsed time and initial velocity. The elapsed time and initial velocity should be validated to insure they are positive numbers. Example: How high will an object be after 1.5 seconds if it had an initial velocity of 90 feet per second?

· The second choice will calculate the initial velocity given the height of an object and an elapsed time. Again, the input should be validated to insure they are positive. Example: What was the initial velocity of an object that is 225 feet above the ground after 4.5 seconds?

· The third choice will calculate and display the elapsed time it will take an object to achieve a given height with a given initial velocity. Validate this input to insure they are positive. Example: How long will it take a ball thrown at 90 feet per second to be 150 feet above the ground? Note that your program should be made to give both times that this will happen, on the up and on the way down.

· The fourth choice is similar to the third choice except that the height will be zero. We should not include t = 0 as a solution because we know that the object is on the ground at the beginning. We want to determine the elapsed time until it hits the ground after its flight.

· The fifth choice will calculate and display the maximum height achieved by the object given its initial velocity which must be a positive number. Example: How high will the baseball get if thrown at an initial velocity of 100 feet per second? Proposed Strategy – Use a For loop starting at t = 0. The ending value of t can be determined by sending the control to the section of the program for choice 4 which determines how long it would take the object to hit the ground. Another option would be to continue this process until

y = 0. The loop would increment by 0.1 second, unless you prefer more accuracy. Create a memory location, m, that will keep track of the highest value of y calculated during the loop using an If statement similar to If y > m: y►m and display this value, m, on the screen as the maximum height.

Ohm’s Law E=IR where E is the force in volts, I is the current in amperes, and R is the resistance in ohms. Write a program with a menu of the following options:

1) Find volts

2) Find amperes

3) Find Ohms

4) Quit

The choice should be validated to insure it is between 1 and 4.

The first choice will calculate the volts given the amps and ohms. Remember to validate input.

The second choice will calculate and display the amps given the volts and ohms. This will require the student to solve Ohm’s Law for I. The third choice will calculate and display the amps given the volts and ohms. This will require the student to solve Ohm’s Law for R. Have the students investigate Ohm’s Law and determine who might use it and under what circumstances would it be applied.

Work Write a program that will ask the user to input the amount of time it takes for a worker to complete a job. The user will continue to input times for two workers. The program will then calculate how long it will take all the workers working together to complete the job.

Proposed Strategy – Solve the work equation
[image: image30.wmf]TimeTogether

TimeAlone

1

+

TimeTogether

TimeAlone

2

=

1

 for Time Together. In doing so, we get
[image: image31.wmf]TimeTogether

=

TimeAlone

1

*

TimeAlone

2

TimeAlone

1

+

TimeAlone

2

. Challenge: Once the program can handle two workers, modify it to handle three workers. Then modify it further to handle an undetermined number of workers where the user would continue to enter the times that the workers can do the job alone until they enter a code number, such as –1, indicating they are finished. Your final product would offer the choice of two workers, three workers, or N workers.

Unit Price Given two or more packaging purchase options, calculate and display the unit price of each and determine and display the best value. For example:

TO QUIT ENTER -1

ENTER QTY 6

ENTER PRICE 3.06

UNIT PRICE .51

ENTER QTY15

ENTER PRICE 8.55

UNIT PRICE .57

ENTER QTY –1

BEST VALUE .51

6

FOR 3.06

Data – Given an undetermined number of numeric values, the program should calculate the mean and the range. These numbers can represent attendance, percent defective parts produced, physical measurements of a product, average miles driven per day by rental cars, daily sales figures, or average hours per week playing video games. Use your imagination to make the situation real and not contrived. For example:

TO QUIT ENTER -1

ENTER A VALUE 467

ENTER A VALUE 479

ENTER A VALUE 503

ENTER A VALUE 459

ENTER A VALUE 486

ENTER A VALUE –1

MEAN IS 478.8

RANGE IS 36

These values do not always have to be positive. You could enter the deviation from the mean, which would involve positive and negative values.

Change – Write a program that will input the amount of change to be given. Validate this input as being between 1 and 99. Determine the number of quarters, dimes, nickels, and pennies that should be given so that the fewest coins are used. Repeat this procedure until the user enters a predetermined code to quit.

Miles Per Gallon – Write a program that will ask the user for their name, the number of miles driven and the number of gallons of gas. Validate that the miles and gallons are positive. Calculate the miles per gallon for this tank of gas. The output will refer to the user by name and display the calculated miles per gallon to a desired accuracy (for example, one decimal place). Once this is working, modify the program to continue to ask the user for data on more tanks of gas until the user enters a predetermined code to quit. For each tank of gas the program will calculate the miles per gallon. Once the user indicates the desire to quit, the program will calculate and display the cumulative miles, gallons, and miles per gallon for all tanks of gas combined.

Mixture – Given the quantity of a mixture, the existing percentage of one ingredient in the mixture, and the desired percentage of the ingredient in the mixture, the program will determine how much of the ingredient must be added to increase its strength to the desired level or how much inert ingredient must be added to dilute the strength to the desired level. This could involve getting the correct percentage of antifreeze in a radiator, the percentage of active ingredient in a medicine, the percentage of salt or acid in a solution, or the percentage of walnuts in mixed nuts. For example:

ENTER QTY 15

CURRENT PERCENT 32

DESIRED PERCENT 45

QUANTITY OF

PURE INGRED

TO ADD IS 3.5

It is not necessary to get into the algebraic techniques of solving mixture problems. One of the beauties of programming is that it allows a symbolically complex strategy to be performed quickly and accurately. This challenge can be handled by the following inefficient strategy involving a minimum of symbolic manipulation.

Variable list

Q is quantity (Input)

C is current percentage (Input)

D is desired percentage (Input)

A is amount of ingredient (Calculate as C*Q ► A)

N is new quantity (Initialized Q ► N)

Pseudo code of Strategy:

If C < D

Then

Repeat loop until C > D

A+0.1 ► A

N+0.1 ► N

A/N ► C

End

Else

Repeat loop until C < D

N+0.1 ► N

A / N ► C

End
End

Display “ QTY TO ADD IS “ N - Q

There are no equations to solve, just add a little of the ingredient to increase the strength or a little of anything else to dilute it and take a measurement. If the desired level has not been achieved, do it again and keep doing it until the desired level of strength is obtained. While this may not be the most efficient method, it may be easier for students to understand and the calculator will determine the answer almost instantaneously.

What is the worst grade I can get and still pass? – Given four test scores and the minimum desired average, determine the lowest test score allowed to achieve the desired average. If it is not possible, print “NOT POSSIBLE” on the screen. Example:

ENTER TEST 1 85

ENTER TEST 2 77

ENTER TEST 3 91

ENTER TEST 4 81

DESIRED AVG 89

YOU NEED A 111

NOT POSSIBLE

If the desired average had been 86, the output would have been 96.

Payback – Given the initial investment, annual maintenance cost and annual savings, determine the number of years it will take to payback the investment.

Variable List

I is initial investment

C is annual maintenance cost

S is annual savings

Y is number of years (Initialized Y►1)

T is total cost (Initialized I►T)

X is total savings (Initialized to zero X►0)

Pseudo code of Strategy

Input I

Input C

Input S

Y ► 1
I ► T

X ► 0
Repeat until X≥ T

T+C ► T

X+S ► X

Y+1 ► Y

End

Display “NUM YEARS IS “, Y

A surveyor starts at one corner of a piece of property and measures the length of each side and the measure of each angle. If the survey is done correctly, the property line will return to the starting point. To check the angles that are measured, we must write a program that will ask the user to enter the measure of the angles. Since we cannot assume that all the angles of the property line are the same, we must enter each one. The program must calculate the sum of the angles measured by the surveyor, calculate the sum of the measures of the interior angles of the polygon using the formula (n-2)*180, and calculate the difference between the two (the error). If the error is within a tolerance, tell them “GOOD JOB”, otherwise tell them they must do the job again. As the values are being entered, the program should keep a running total of the angles and keep a count of how many angles have been entered. To signal the end of the list of angles, the user could type in a value that is unrealistic, like –1 or 0.

Compound Interest Project

Project Description

Input the principal, interest rate, time in years, and the number of times interest is compounded annually. Validate that the input values are all positive. Calculate and print the period number, the interest earned for the period, the ending balance.
Teacher Notes

Proposed Strategy - For illustration purposes, I will use the following variables: P-principal, R-interest rate, C-number of times interest is compounded annually, T-time in years, I-interest earned, B-ending balance, N-number of periods. Initialize the ending balance P►B. Use a For loop to count N from 1 to C*T. Each time through the loop calculate B * R / C ► I and

B + I ►B. Print N, I, and B on the screen. Make sure that the output is labeled so a user who is not familiar with the program can understand it. Notice how the program formats the period number as a fixed decimal to 0 places and then formats the interest and balance to 2 places. Use the Pause command after each pass through the loop, otherwise the user would only have a chance to view the final period. Ask the students to explain why the interest increases each time it is calculated. How does compound interest compare to the simple interest project in the Formulas Unit?

Program ____Compound Interest_____________ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

Given the principal, interest rate, number of times compounded annually, and the number of years, this program will calculate and display a chart of each period’s interest and total balance

What is the desired output?

A chart with each period’s interest (I) and total balance (B)

What information have you been given?

Given their name (Str1), principal (P), interest rate (R), number of times compounded annually (C), and the number of years (T)
What formulas are needed?

To calculate the interest earned for each period B*R/C/100 ► I (The /100 is to convert the interest rate from a % to a decimal.)

To calculate the ending balance for each period B+I ► B

Solving Plan

 Test Data

Input name

Display “Hi, name”

Input: R=10000, I=5, C=4, T=3

Label B (B for Beginning)

Input the Principal (P) indicating that they should enter
Output: Ending balance after 12 periods

zero to quit. If they enter zero, Goto E (E for

 is 11,607.55

End). Validate input as ≥ 0

Input the Interest rate (R). Validate as ≥ 0

Input the number of times compounded annually (C).

Validate as > 0

Input the number of years (T). Validate as > 0

What improvements could be made?
Repeat the following steps for N from 1 to C*T

(C*T is the number of periods)

Calculate the Interest

Calculate the Ending Balance

Format display to Fix 0

Display N

Format display to Fix 2

Display I, B

Goto B (Send control back to beginning to repeat)

Label E (E for End)

Diplay “Goodbye, name”

Sample Program

Input "ENTER YOUR NAME ",Str1

Disp "HELLO ",Str1

Lbl B

Repeat P≥0

Disp "ENTER 0 TO QUIT"

Input "PRINCIPAL ",P

If P=0

Goto E

If P<0

Disp "ERROR TRY AGAIN"

End

Repeat R≥0

Input "INT RATE ",R

If R<0

Disp "ERROR TRY AGAIN"

End

Repeat C>0

Input "TIMES COMP ",C

If C≤0

Disp "ERROR TRY AGAIN"

End

Repeat T>0

Input "NUM YEARS ",T

If T≤0

Disp "ERROR TRY AGAIN"

End

P►B

For(N,1,C*T)

B*R/C/100►I

B+I►B

Fix 0

Disp "PERIOD ",N

Fix 2

Disp "INTEREST ",I,"BALANCE ",B

Pause

End

Goto B

Lbl E

Disp "GOODBYE"",Str1

The output would be:

[image: image32.png]
[image: image33.png]
[image: image34.png]
[image: image35.png]
[image: image36.png]
[image: image37.png]
[image: image38.png]
[image: image39.png]
[image: image40.png]
[image: image41.png]
[image: image42.png]
[image: image43.png]
[image: image44.png]
[image: image45.png]
[image: image46.png]
Built-In Applications (APPS)

I.
SOL: COM.1, COM.13

II.
Overview

Many graphing calculators have built-in applications. These are programs that are already written and included in the memory of the calculator when purchased. Although it may not be considered “programming” to execute someone else’s program, it is possible to learn from these programs and determine how these programs do what they do. COM.13 specifically states, “The student will select and implement built-in (library) functions in processing data.” For the

TI-83+, most of the applications are financial in nature and can introduce the student to important concepts, such as the present value of money, the future value of money, rate of return, amortization schedules, effective interest rate, and annuities. Even if their vocation does not involve finance, their personal lives should benefit from a basic understanding of these concepts. Even though students will not be writing the program, they will need a working knowledge of these concepts in order to use the programs that are already built into the calculator.

III.
Points of Emphasis

KEEP IT REAL! Do not throw numbers into the calculator. Explain to students what the numbers represent and explain what you are trying to find. Get students involved. They could write short papers, give short presentations on topics, view appropriate videos, or have guest speakers come to class.

IV.
Methods

Go through each of the built-in applications, explain the purpose of each, and see if the class can determine a situation that would require this application. For example, a student finds a car for $6,500. They can pay $500 as down payment and finance the remaining balance with a loan at 7% interest. Their current budget constraints will allow them to make payments of $250/month. How many months will it take to pay off the loan? If a newer car costs $10,000 and can be financed for 36 months at 7%, what would the monthly payments be? Have students look through the newspaper or other sources of information to find costs of vehicles, current interest rates, et cetera. Any type of loan or savings situation can be investigated with these applications.

V.
Activities

These are examples of activities for the TI83+ APPS menu that can be used:

Loans - Use the TVM Solver to investigate situations involving loans by entering data for all except one of the following: N-number of payments, I%-interest rate, PV-present value (loan amount), PMT-amount of payment (this will be a negative number since it is a cash outflow), P/Y-payments per year. Place the cursor on the one left blank and press ALPHA SOLVE to solve for the missing data.

Savings - Use the TVM Solver to investigate situations involving savings by entering data for all except one of the following: N-number of payments, I %-interest rate, PV-present value of savings (this will be a negative number since it is a cash outflow), FV-future value of savings, C/Y-compounded interest payments per year. Place the cursor on the one left blank and press ALPHA SOLVE to solve for the missing data.

Amortization – The first task is to have the students find out what amortization means. They may know what it is, but may not know it had a name. To amortize a debt is to gradually pay off the debt by making payments at certain time intervals until it is paid off. Literally translated, a (to) mort (death).

1) Once again, select Finance from the APPS menu, and then select the TVM Solver. If you wish to determine the loan balance over the life of a loan, enter the number of payments in N, the interest rate in I%, the payment amount in PMT remembering that this will be negative since it is a cash outflow, the future value FV should remain zero since we want to pay the balance down to zero, and the number of payments per year in P/Y.

2) Move the cursor to PV and press [ALPHA] [SOLVE]. This displays the present value of this arrangement, which should be the beginning balance of the loan.

3) From the MODE select Par for parametric on the 4th line down. Press [Y=]

4) Press [
[image: image47.wmf]n

T

X

,

,

,

q

] to assign
[image: image48.wmf]T

1

X

 as T.

5) For
[image: image49.wmf]T

1

Y

, go to the APPS menu, select Finance, and then select 9: bal(

6) Press [
[image: image50.wmf]n

T

X

,

,

,

q

] to assign
[image: image51.wmf]T

1

Y

 as bal(T).

7) Press [WINDOW] and enter Tmin = 0, Tmax = the number of payments, Tstep = payments per year, Xmin = 0, Xmax = the number of payments, Ymin = 0, Ymax = a number a little larger than the PV you solved for in step 2. Set Xscl and Yscl to convenient values.

8) Press [TRACE] to get graph. Use left and right arrows to determine the loan balance after various number of payments

Subroutines

I.
SOL: COM.1, COM.2, COM.3, COM.4, COM.5, COM.6, COM.7, COM.10, COM.11, COM.12, COM.14, COM.15, COM.18, COM.19, COM.20

II.
Overview

Some projects are complex enough that it is advantageous to break the project into smaller, more manageable parts. There are few better examples of complex procedures than computing taxes or balancing your checkbook. As COM.5 states, “The student will divide a given problem into manageable sections (modules) by task and implement the solution. The modules will include an appropriate user-defined function, subroutines, and procedures. Enrichment topics might include user-defined libraries (units) and object-oriented programming.”

III.
Points of Emphasis

KEEP IT REAL! Life does not get any more real than taxes and balancing a checkbook. Taxes are one of only two things that are inevitable for all and the cost of bouncing checks will get anyone’s attention. The student should learn to take a complex challenge and break it down into smaller parts. It may be helpful to use the analogy of a general contractor breaking a big construction job down and subcontracting out the parts.

IV.
Methods

Start with one part of the project, plan the strategy, write the code, and test the program. Move on and do the same with another part of the project. Once each part works separately, put them together and see if they still interact nicely. Keep going until the project is complete. Remember that all variables are global which means that each of the subroutines has access to all variables. Remember that the same variable name cannot be used for two different things. If T represents Federal Income Tax in one subroutine, you cannot use T to represent State Income tax in another subroutine. This would be an excellent opportunity to discuss the concepts of global variables versus local variables, the scope of a variable, and parameter passing (COM.11).
V.
Activities

These are examples of activities using subroutines. Any challenge that has several steps can be used to illustrate this strategy.

Project 1--Balancing a Checkbook

Use the formulas on the back of your bank statement to balance a checkbook.

1) Write a program that will ask the user to enter all outstanding deposits and calculate their total. We will not need to remember individual deposits, just the total. We will not know ahead of time how many deposits there will be so we will need to use a While or Repeat loop. Explain that an outstanding deposit is not the same as an outstanding student. An outstanding deposit is one that is entered in the checkbook, but does not appear on the bank statement.

2) Write a program that will do the same thing for the outstanding checks.

3) Write a program that will first ask the user for the bank balance shown on the bank statement. Then it will call the program to enter and total the outstanding deposits. Emphasize the term call, which means that one program is sending control to another program. Then it will call the program to enter and total the outstanding checks. Finally, it will calculate the current checkbook balance using the formula: bank balance + outstanding deposits – outstanding checks = checkbook balance. Explain the reasoning behind this formula so it makes sense to the students and is not just a formula that someone made up or one that they have to memorize. If they can understand the logic behind the formula, they will not need to memorize it.

Project 2--Fraction Calculator

This project will ask the user for two fractions and the operation to be performed. It will then perform the operation and simplify the result. Let’s break this large and relatively complicated task into smaller tasks and then write a program to accomplish each one.

1) Write a program that will input the numerators and denominators of two fractions and the operation to be performed. Validate the input for the denominator to insure that it is not zero. Since the operation is not a numeric value, use a String variable to store the data.

2) Write four separate programs, one to add the fractions, one to subtract, one to multiply, and one to divide. At this point do not worry about simplifying or that the numerator and denominator might both be negative. Just determine numerator and denominator of the answer. The programmer may find it easier for addition and subtraction if you use a common denominator (denominator1 * denominator2) rather than determining the least common denominator. For example, 1/4 + 1/6 would result in 10/24 and (this will be simplified in the next program). Go back to the program written previously (in step 1) and add If statements that will transfer control to the ADD program if the operation is +, the SUBTRACT program if the operation is —, the MULTIPLY program if the operation is *, and the DIVIDE program if the operation is “/”. At this point, your project should ask for the numerator and denominator of each fraction, insuring that the denominator is not zero, and the operation to be performed. It should then perform the indicated operation with the result being a fraction that has not yet been simplified or “cleaned up.” Display this result anyway so as to ensure that the operation programs work correctly. This part of the program may be deleted later.

3) Write a program to address the signs of the numerator and denominator. It is acceptable to have 3/5 or –3/5 but not acceptable to have 3/-5 or –3/-5. The simplest and most efficient method would be to take the opposite of the numerator and denominator in any fraction where the denominator is negative. That would change 3/-5 to –3/5 and would change –3/-5 to 3/5.

4) Write a program to simplify the fraction by dividing the numerator and denominator by the greatest common factor. One method to determine the GCF is to determine the absolute value of the numerator and denominator. Create a String variable and assign NOTFOUND to it. Create a For loop starting at the smaller absolute value (maximum possible GCF) counting down by ones. The first value that divides evenly into both the numerator and denominator is the GCF. Use a GOTO statement to bail out of the loop. Simplify the answer by dividing both the numerator and denominator by the GCF. Display the answer on the screen.

Project 3--Income Taxes

Federal Income Tax The 2002 Federal Tax Rate Schedule for an individual whose filing status is single is as follows:

If taxable income is

But not

Tax is

of the amount

Over-

over-

over-_______

$0

$6,000

………….10%

$0

6,000

27,950

$600.00 + 15%

6,000

27,950

67,700

3,892.50 + 27%

27,950

67,700

141,250

14,625.00 + 30%

67,700

141,250

307,050

36,690.00 + 35%

141,250

307,050

………

94,720.00 + 38.6%

307,050

Write a program that will input the taxable income from the user, then calculate and display the amount of the Federal Income Tax. Have the students research the current Federal Tax Rate Schedule to use current figures. Discuss the graduated tax concept. Compare and contrast this graduated tax with the taxes that are a fixed percentage, such as the sales tax or real estate tax, and those that are a fixed amount, such as automobile registration fees.
Federal Taxable Income Write a program that will input the total of the individual’s wages, salaries, tips, and interest. Ask the individual if their parents claim them on their return (If parents provided most of their financial support, they probably will claim them). The program will calculate and display the individual’s exemptions, the individual’s standard deduction, and the individual’s taxable income. Have students research the difference between an exemption and a deduction. In 2002, the exemption policy for the 1040EZ stated that a single individual not claimed by their parents was entitled to an exemption of $3,000, and a standard deduction of $4,700. We will assume the individual is single. A possible modification of this program would be to include the filing status. Individuals that are claimed by their parents do NOT get an exemption ($0) and the following is used to determine their standard deduction:

A. Add $250 to the total wages, salaries, tips, and interest

B. The minimum standard deduction is $750

 $750

C. Enter the larger of line A or line B

D. Maximum standard deduction $4,700

 $4,700

E. Enter the smaller of line C or D. This is your standard deduction

To determine the taxable income:

total income – exemptions – standard deduction = taxable income

Once this is written and tested, modify these two programs so they combine to calculate the taxable income and the income tax.

Standard Deduction or Itemize? – Use the Federal Schedule A--Itemized Deductions to determine if the taxpayer should itemize deductions or claim the standard deduction. Have the students research the difference between itemizing deductions and claiming the standard deduction. The program will need to input the taxpayer’s gross income (NOT taxable income), total medical expenses, other taxes (such as state income tax, real estate tax, property tax), interest on a mortgage, gifts to charity, losses due to casualty or theft, and job expenses.

In 2002, the following guidelines were used to calculate the total itemized deductions:

1) Medical expenses – Only the amount of medical expense that exceeds 7.5% of the taxpayer’s gross income can be deducted.

2) Taxes – State income tax, real estate tax, and property tax can be deducted.
3) Interest – Only interest on a mortgage (home loan) can be deducted. Interest on credit cards or car loans cannot be deducted.
4) Gifts to Charity – Any gift to a recognized charity can be deducted. (Note: Friends are probably not recognized by the Federal Government as a charity).
5) Casualty and Theft Losses – Losses from theft or casualty are deductible.

6) Job Expenses and Misc. – Unreimbursed employee expenses, tax preparation fees, and safe deposit box rental are deductible.

Total all these deductible expenses. If they are greater than the taxpayer’s standard deduction (currently $4,700), it would benefit the taxpayer to itemize deductions. If the itemized deductions are less than the standard deduction, they should claim the standard deduction. The whole idea is to legally reduce the taxpayer’s taxable income, thereby reducing their tax liability.

Once this program works, incorporate it with the other two so the combination will determine whether to itemize deductions or claim the standard deduction, calculate the taxable income, and calculate the income tax.
Virginia State Income Tax – Use the following chart for the Commonwealth of Virginia for 2002 to write a program to determine the income tax owed by an individual given the taxable income. This is very similar to the first program written for the Federal Income Tax.

If taxable income is

But not

Tax is

of the amount

Over-

over-

over-_______

$0

$3,000

……2%

$0

3,000

5,000

$60 + 3%

3,000

5,000

17,000

120 + 5%

5,000

17,000

……...

720 + 5.75%

17,000

Compare the income tax in Virginia to the Federal Income Tax. Put this program with the others so that after calculating the Federal Income Tax, it will also calculate the Virginia Income Tax.

Program ______Federal Income Tax_______________ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

Given the taxable income, this program will calculate and display the federal income tax

What is the desired output?

The federal income tax (T)

What information have you been given?

The taxable income (I)

What formulas are needed?

The formula for federal income tax varies by income level. See the chart in the project description for

specific formulas.

Solving Plan

 Test Data

Input the taxable income. Verify that this input is ≥ 0.
Input: I=5300

Output: T=530

Input: I=10000
Output: T=1240

Calculate the federal income tax for each income level.
Input: I=30000
Output: T=4445.50

For each level, control should be sent to the

Input: I=75000
Output: T=16815

end of the program to display the tax after the
Input: I=200000
Output: T=57252.50

tax has been calculated. This will make the

Input: I=400000 Output:T=130598.70

program more efficient by skipping If tests that

do not apply.
 What improvements could be made?

Display the tax

Determine Federal Taxes

Fix 2

Repeat I≥0

Input "TAXABLE INCOME:",I

If I<0

Disp "MUST BE >0"

End

If I<6000

Then

.1*I
T

Goto E

End

If I<27950

Then

600+.15*(I-6000) ►T

Goto E

End

If I<67700

Then

3892.5+.27*(I-27950) ►T

Goto E

End

If I<141250

Then

14625+.3*(I-67700) ►T

Goto E

End

If I<307050

Then

36690+.35*(I-141250) ►T

Goto E

End

94720+.386*(I-307050►T

Lbl E

Disp "FED TAX IS ",T

The output will be:

[image: image52.png]
Program ____Taxable Income____________________ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

Given the wages and whether or not a taxpayer can be claimed by their parents, this program will calculate and display the amount of their exemption, standard deduction, and taxable income.

What is the desired output?

Calculate and display the amount of their exemption (X), standard deduction (D), and taxable income (I).

What information have you been given?

The taxpayer’s gross wages(W) and whether their parents can claim them as a dependent(C). The

variable C would traditionally be a Boolean variable to store true or false, but since calculators do

not support Boolean variables, we will use a numeric variable and let 0 represent false and 1 represent

true.

What formulas are needed?

W – X – D ► I

Solving Plan

 Test Data

Input total wages, salary, and tips. Validate wages >0
Input: W=10000, C=1

Ask if taxpayer can be claimed by parents

(0 is F, 1 is T)
Output: X=0, D=4700, I=5300

Validate input as 0 or 1.

If cannot be claimed by parents, assign 3000 to X

and
Input: W=5000, C=0

4700 to D. Send control to end of program to
Output: X=3000, D=4700, I=0

calculate taxable income(I)

Else assign 0 to X.

Determine which is larger 750 or W+250. This

is minimum std. deduction(D). The maximum What improvements could be made?

deduction is 4700.

Calculate taxable income W – X – D ► I
Display the values for exemptions, standard deduction,

and taxable income

Determine Exemptions, Deductions, and Taxable Income

Fix 2

Repeat W≥0

Disp "ENTER WAGES,"

Disp "SALARIES, TIPS,"

Input "AND INTEREST: ",W

If W<0

Disp "MUST BE ≥0"

End

Repeat C=0 or C=1

Disp "CAN PARENTS"

Disp "CLAIM YOU"

Input "(1-YES,0-NO):",C

If C≠0 and C≠1

Disp "MUST BE 0 OR 1"

End

If C=0

Then

3000►X

4700►D

Goto Z

End

0►X

If W+250<750

Then

750►D

Else

W+250►D

End

If D>4700

4700►D

Lbl Z

W-X-D►I

Disp "EXEMPTION IS ",X

Disp "STD DEDUCTION IS",D

Disp "TAXABLE INCOME",I
The outcome will be:

[image: image53.png]
[image: image54.png]
Program _____Itemize or Standard Deduction?_______ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

Given the user’s gross income and the amount of each expense that can be itemized, this program will determine whether they should itemize their deductions or take the standard deduction.

What is the desired output?

The amount of the itemized deduction and the standard deduction will be compared and the larger will

be assigned to D and displayed.

What information have you been given?

The user’s gross income(W), medical expenses(M), other taxes(A), interest(N), gifts(F), losses(L),

and job expenses(J).

What formulas are needed?

Only the medical expenses greater than 7.5% of gross income can be itemized. The total itemized

expenses (M-.075*G)+A+N+F+L+J will be used as the deduction if it exceeds the standard deduction.

Solving Plan

 Test Data

Input the gross income(W). Validate W≥ 0

Input: W=10000, M=2100, A=2500,

Input each of the itemized expenses M,A,N,F,L,J.

N=2000, F=125, L=0, J=50

Validate that each is ≥ 0

Output: Itemize. Deduction is 6025

If M ≥ .075*W then assign M - .075*W to M

Input: W=10000, M=500, A=1000,

Else assign 0 to M

N=500, F=0, L=0, J=0

Output: Standard Deduction of 4700

If total of itemized expenses > 4700, then they should

itemize and their deduction is the total of the What improvements could be made?

itemized expenses.

Else, they should use the standard deduction of 4700

Itemize or Standard Deduction?

Fix 2

Repeat W≥0

Input "GROSS INCOME: ",W

If W<0

Disp "MUST BE ≥0"

End

Repeat M≥0

Input "MEDICAL EXPENSE:",M

If M<0

Disp "MUST BE ≥0"

End

Repeat A≥0

Input "OTHER TAXES: ",A

If A<0

Disp "MUST BE ≥0"

End

Repeat N≥0

Input "INTEREST: ",N

If N<0

Disp "MUST BE ≥0"

End

Repeat F≥0

Input "GIFTS: ",F

If F<0

Disp "MUST BE ≥0"

End

Repeat L≥0

Input "LOSSES: ",L

If L<0

Disp "MUST BE ≥0"

End

Repeat J≥0

Input "JOB EXPENSES: ",J

If J<0

Disp "MUST BE ≥0"

End

If M>.075*G

Then

M-.075*G►M

Else

0►M

End

If M+A+N+F+L+J<4700

Then

4700►D

Disp "YOU SHOULD"

Disp "CLAIM STD DED OF",D

Else

M+A+N+F+L+J►D

Disp "YOU SHOULD"

Disp "ITEMIZE. YOUR"

Disp "DEDUCTION IS ",D

DelVar M

DelVar A

DelVar N

DelVar F

DelVar L

DelVar J

The output will be:

[image: image55.png]
[image: image56.png]
[image: image57.png]
Program ______Virginia Income Tax______________ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

Given the taxable income, this program will calculate and display the Virginia income tax

What is the desired output?

The Virginia income tax (V)

What information have you been given?

The taxable income (I)

What formulas are needed?

The formula for Virginia income tax varies by income level. See the chart in the project description for specific formulas.

Solving Plan

 Test Data

Input the taxable income. Verify that this input is ≥ 0.
Input: I=2000

Output: V=40

Input: I=4000

Output: V=90

Calculate the Virginia income tax for each income level.
Input: I=10000
Output: V=370

For each level, control should be sent to the

Input: I=20000
Output: V=892.50

end of the program to display the tax after the

tax has been calculated. This will make the

program more efficient by skipping If tests that

do not apply.
 What improvements could be made?

Display the tax

 Determine Virginia State Tax

Fix 2

Repeat I≥0

Input "TAXABLE INCOME:",I

If I<0

Disp "MUST BE ≥0"

End

If I<3000

Then

.02*I►V

Goto E

End

If I<5000

Then

60+.03*(I-3000) ►V

Goto E

End

If I<17000

Then

120+.05*(I-5000) ►V

Goto E

End

720+.0575*(I-17000) ►V

Lbl E

Disp "VIRGINIA TAX IS ",VTAX IS ",V
The outcome will be:

[image: image58.png]
Tax Project Combined using Subroutines

TAXINC2

Fix 2

Repeat W≥0

Disp "ENTER WAGES,"

Disp "SALARIES, TIPS,"

Input "AND INTEREST: ",W

If W<0

Disp "MUST BE ≥0"

End

Repeat C=0 or C=1

Disp "CAN PARENTS"

Disp "CLAIM YOU"

Input "(1-YES,0-NO):",C

If C≠0 and C≠1

Disp "MUST BE 0 OR 1"

End

If C=0

Then

3000►X

4700►D

Goto Z

End

0►X

If W+250<750

Then

750►D

Else

W+250►D

End

If D>4700

4700►D

Lbl Z

W-X-D►I

Disp "EXEMPTION IS ",X

Disp "STD DEDUCTION IS",D

Disp "TAXABLE INCOME",I

prgmITEMIZE2
ITEMIZE2

Repeat M≥0

Input "MEDICAL EXPENSE:",M

If M<0

Disp "MUST BE ≥0"

End

Repeat A≥0

Input "OTHER TAXES: ",A

If A<0

Disp "MUST BE ≥0"

End

Repeat N≥0

Input "INTEREST: ",N

If N<0

Disp "MUST BE ≥0"

End

Repeat F≥0

Input "GIFTS: ",F

If F<0

Disp "MUST BE ≥0"

End

Repeat L≥0

Input "LOSSES: ",L

If L<0

Disp "MUST BE ≥0"

End

Repeat J≥0

Input "JOB EXPENSES: ",J

If J<0

Disp "MUST BE ≥0"

End

If M>.075*W

Then

M-.075*W►M

Else

0►M

End

If M+A+N+F+L+J>4700

Then

M+A+N+F+L+J►D

Disp "YOU SHOULD "

Disp "ITEMIZE. YOVR"

Disp "DEDUCTION IS NOW",D

I-(D-4700) ►I

Disp "TAXABLE INCOME =",I

End

Pause

DelVar M

DelVar A

DelVar N

DelVar F

DelVar L

DelVar J

prgmTAXES2
TAXES2

If I<6000

Then

.1*I►T

Goto E

End

If I<27950

Then

600+.15*(I-6000) ►T

Goto E

End

If I<67700

Then

3892.5+.27*(I-27950) ►T

Goto E

End

If I<141250

Then

14625+.3*(I-67700) ►T

Goto E

End

If I<307050

Then

36690+.35*(I-141250) ►T

Goto E

End

94720+.386*(I-307050►T

Lbl E

Disp "FED TAX IS ",T

prgmSTATE2
STATE2

If I<3000

Then

.02*I►V

Goto E

End

If I<5000

Then

60+.03*(I-3000) ►V

Goto E

End

If I<17000

Then

1205+.05*(I-5000)►V

Goto E

End

720+.0575*(I-17000) ►V

Lbl E

Disp "VIRGINIA TAX IS ",V
The outcome will be:

[image: image59.png]
[image: image60.png]
[image: image61.png]
[image: image62.png]
[image: image63.png]
Student Assessment

It is suggested that students be graded based on a portfolio. They will have an accumulation of projects that can be graded using the suggested Scoring Rubric at the end of this section. This portfolio should be the dominant factor in determining their grade since it would reflect their achievements and their demonstrated skills in programming. That is not to say that it must be the sole determinant of the student’s grade. Appropriate weighting can be given to quizzes or tests along with a cumulative exam at the end of the grading period and/or the end of the course. These assessments can involve any type of questioning including multiple choice (which is used on the AP Computer Science Exam), true/false, short answer, or save one of the suggested projects and give the project to the students as an assessment grade where they do the best they can without outside help. This would allow them to demonstrate their knowledge while using an assessment technique that may be more comfortable for them than a traditional written assessment. If you choose, you could offer them help, but at a price, by taking points off for any help you give. Strongly consider allowing them to use their notes while writing projects and taking assessments. This would encourage good notetaking and is more reflective of the programming work environment where the use of reference material is essential. A programmer would not be told to write a program strictly from memory without looking at any notes or reference material.

Scoring Rubric

25 points
100 points

 1 4
Restate the problem. In the students own words, restate the problem. A recommended form would be: “Given (describe the input data required for the program), this program will (describe any data to be calculated and/or displayed as output).

 1 4
Output. Completely list all data to be displayed as output, including the variables that will be used to represent them in the program.

 1 4
Input. Completely list all data necessary to input into the program using either assignment input statements. Include the variables that will be used to represent them in the program.

 1 4
Test Data. Detail at least one complete set of input data and the correct output data. Some programs may require more than one set for a satisfactory test. For example, a program that calculates a workers pay should be tested with at least one set of data reflecting no overtime (hours <=40) and a second set of data reflecting overtime (hours > 40).

 3 12
Formulas Completely list all formulas required by the program using the variables detailed in the output and input sections.

 4 16
Solving Plan. Completely list all steps required in the program in pseudo code and/or flowchart.

 4 16
Program is well written and efficient. The program does not have unnecessary commands and uses good programming style to efficiently solve the problem.

 10 40
Program executes correctly. Does the program work? It should input or assign the necessary data and accurately calculate and display the desired output.

Program _________________________________ Name________________________

Period ____________

 Date _____________________________

Restate the problem in your own words:

__

__

__

What is the desired output?

__

__

__

What information have you been given?

__

__

__

What formulas are needed?

__

__

__

Solving Plan

 Test Data

__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________

__

__

__ What improvements could be made?
__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________
__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________

__ ____________________________________
Resources

This document is not intended to be a textbook for the Computer Mathematics course. You will need to use other resources, especially for problem sets. Any computer programming resource will have problem sets that can be used or adapted to this course, regardless of the language. Whether it is BASIC, C++, or Java the resource will have problem sets involving input/output, formulas, conditionals, loops, subroutines, and other topics. Although the syntax will be different, most of the problems can still be adapted to this course. In addition, consumer and business mathematics resources can provide excellent practical situations that can be used to create a challenge for programming. Algebra I and Geometry textbooks can provide programming opportunities. Formulas can be found in many sources. Many textbooks have a quick reference sheet with many formulas. The SAT and Standards of Learning tests provide formulas for students to use that can be adapted for use in this course. The Internet can be a source of problem sets as well.

Given the amount of the sale and the percentage sales tax, this program will calculate and display the amount of the sales tax and the total amount of the sale, including the tax.

T – amount of sales tax

A – amount of total sale, including tax

S – amount of the sale

R – percentage sales tax

S * R / 100 = T	converts R to a decimal by dividing by 100 and calculates amount of tax

S + T = A		sale + tax = total

S = 15.50

R = 4.5

T = .6975

A = 16.1975

Pseudo code:

Input amount of sale (S)

Input percentage of sales tax (R)

Calculate sales tax (T)

Calculate total amount of sale (A)

Output sales tax (T)

Output total amount of sale (A)

� EMBED MS_ClipArt_Gallery.5 ���

PAGE
2
Virginia Department of Education

_993736379.unknown

_1011527852.unknown

_1011528232.unknown

_1117819994.unknown

_1117820305.unknown

_1122183041.unknown

_1117820091.unknown

_1092813056

_1117819857.unknown

_1011528461.unknown

_1011527979.unknown

_1011528096.unknown

_1011527895.unknown

_1011527677.unknown

_1011527719.unknown

_994502120.unknown

_1011527552.unknown

_993736507.unknown

_994502048.unknown

_991052686.unknown

_992099295.unknown

_993540791.unknown

_991105542.unknown

_991126119.unknown

_991126160.unknown

_991105407.unknown

_989670243.unknown

_989670383.unknown

_989670130.unknown

