1. This pattern was made using the first six shapes.

![Pattern](image)

Identify and describe the pattern, then extend the pattern two more shapes.

2. Sam went to a store to buy candy bars. The price list for the candy bars is shown.

<table>
<thead>
<tr>
<th>Number of Candy Bars</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$6</td>
</tr>
<tr>
<td>4</td>
<td>$8</td>
</tr>
<tr>
<td>6</td>
<td>$12</td>
</tr>
<tr>
<td>8</td>
<td>$16</td>
</tr>
</tbody>
</table>

Identify and describe the relationship between the number of candy bars and total cost as a rule; then, determine what would be the cost for 10 candy bars.

3. Look at the pattern of numbers shown below.

2, 10, 18, 26, …

What will be the next number in the pattern?

a. 28
b. 30
c. 32
d. 34
4. The table shows a number pattern

<table>
<thead>
<tr>
<th>Input</th>
<th>18</th>
<th>22</th>
<th>26</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

Which could be the rule for this pattern?

a. Add 9
b. Subtract 10
c. Multiply by 4
d. Divide by 2

5. Caldron is using an addition rule to make the number pattern shown below.

\[2 \frac{1}{3}, 3, 3 \frac{2}{3}, 4 \frac{1}{3}, 5\]

If the pattern continues in the same way, what will be the next number in the pattern?

a. 6
b. 6 \frac{1}{3}
c. 5 \frac{2}{3}
d. 5 \frac{1}{3}