Grade 5 Mathematics Vocabulary Word Wall Cards

Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students. **The cards are designed for print use only.**

Table of Contents

Number and Number Sense
- Decimal Place Value
- Round
- Mixed Number
- Equivalent
- Prime Number
- Composite Number
- Even and Odd Numbers

Computation and Estimation
- Fraction: Addition
- Fraction: Subtraction
- Least Common Multiple
- Greatest Common Factor
- Unit Fraction Multiplication
- Addition
- Subtraction
- Multiply: Product
- Divide: Quotient

Measurement and Geometry
- Area: Square units
- Perimeter: Units
- Volume: Height, Width, Length
- Equivalent Measurements: Kilometer, Meter, Centimeter
- Equivalent Measurements: Kilogram, Grams
- Equivalent Measurements: Liter, Milliliters
- Millimeter: Centimeter
- Chord
- Diameter
- Radius
- Circumference
- Acute Angle
- Obtuse Angle
- Right Angle
- Straight Angle
- Acute Triangle
- Right Triangle
- Obtuse Triangle
- Equilateral Triangle
- Scalene Triangle
- Isosceles Triangle
- Rectangle: Right Angle
- Square: Right Angle
- Parallelogram
- Rhombus
- Trapezoid
- Translation
- Reflection
- Rotation
- Subdivide
- Combine

Probability and Statistics
- Sample Space
- Line Graph
- Fundamental Counting Principle
- Line Plot
- Stem-and-Leaf Plot
- Mean
- Mean: Fair Share
- Median
- Mode
- Range: Measure of Spread

Patterns, Functions and Algebra
- Patterns
- Expression
- Variable Expression
- Equation
- Equality
- Inequality
Decimal Place Value Position

<table>
<thead>
<tr>
<th>Ones</th>
<th>Tenths</th>
<th>Hundredths</th>
<th>Thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>.</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

decimal point
Round 1.24 to the nearest tenth.
Mixed Number

\[\frac{16}{10} = 1 \frac{6}{10} = 1.6 \]
Equivalent

\[
\frac{75}{100} = \frac{3}{4}
\]

\[
0.75 = \frac{3}{4}
\]
Prime Number
has exactly two different factors, 1 and itself

<table>
<thead>
<tr>
<th>Prime numbers to 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>73</td>
</tr>
</tbody>
</table>
Composite Number

has factors other than one and itself

\[1 \times 6 = 6 \]

\[2 \times 3 = 6 \]

factors of 6: 1, 2, 3, 6
Even and Odd Numbers

4 – even

3 - odd
Fraction: Addition

\[\frac{1}{2} + \frac{3}{8} = \frac{7}{8} \]
Fraction: Subtraction

\[
\begin{array}{c}
\frac{5}{8} - \frac{1}{4} = \frac{3}{8}
\end{array}
\]
Least Common Multiple

<table>
<thead>
<tr>
<th>Multiples of 12</th>
<th>Multiples of 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 12 = 12</td>
<td>1 x 18 = 18</td>
</tr>
<tr>
<td>2 x 12 = 24</td>
<td>2 x 18 = 36</td>
</tr>
<tr>
<td>3 x 12 = 36</td>
<td>3 x 18 = 54</td>
</tr>
<tr>
<td>4 x 12 = 48</td>
<td></td>
</tr>
</tbody>
</table>

LCM is 36.
Greatest Common Factor

<table>
<thead>
<tr>
<th>Factors of 12</th>
<th>Factors of 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 12 = 12</td>
<td>1 x 18 = 18</td>
</tr>
<tr>
<td>2 x 6 = 12</td>
<td>2 x 9 = 18</td>
</tr>
<tr>
<td>3 x 4 = 12</td>
<td>3 x 6 = 18</td>
</tr>
<tr>
<td>1, 2, 3, 4, 6, 12</td>
<td>1, 2, 3, 6, 9, 18</td>
</tr>
</tbody>
</table>

GCF is 6.
Unit Fraction Multiplication

How much is \(\frac{1}{2} \times 6 \)?

\[
\frac{1}{2} \times 6 = 3
\]

How much is \(6 \times \frac{1}{2} \)?

\[
6 \times \frac{1}{2} = \frac{6}{2} = 3
\]
Addition

4.65 + 1.24 = 5.89

sum

plus
Subtraction

4.65 – 1.24 = 3.41

difference

minus
Multiply:

Product

$32 \times 48 = 1,536$

product
Divide:

Quotient

\[\frac{280}{14} = 20 \]

\[280 \div 14 = 20 \]
Area:
Square Units

the number of square units needed to cover a surface or plane figure

\[l \times w \]
\[4 \times 3 = 12 \]
Area = 12 square units
Perimeter: Units

the measure of the path or distance around any plane figure in units

3 + 4 + 3 + 4
Perimeter = 14 units
Volume:
Height, Width, Length

the measure of capacity of a 3-D figure, measured in cubic units

\[l \times w \times h \]

5 \times 3 \times 2

Volume = 30 cubic units
Equivalent Measurements: Kilometer, Meter, and Centimeter

1 kilometer (km) = 1,000 meters (m)

1 meter (m) = 100 centimeters (cm)

1 centimeter (cm) = 10 millimeters (mm)
Equivalent Measurements: Kilogram and Grams

1 kilogram (kg) = 1,000 grams (g)
Equivalent Measurements: Liter and Milliliters

1 liter (l) = 1,000 milliliters (ml)
Millimeters:

Centimeters

10 millimeters (mm) = 1 centimeter (cm)
Chord

a line segment connecting any two points on a circle
Diameter

a chord that passes through the center of a circle
Radius

a line segment joining the center of a circle to any point on the circle
Circumference

the distance around or “perimeter” of a circle
Acute Angle

less than 90°
Obtuse Angle

greater than 90º, but less than 180º
Right Angle

exactly 90°
Straight Angle

exactly 180º
Acute Triangle

all angles less than 90°
Right Triangle

one 90° angle
Obtuse Triangle

one angle greater than 90°
Equilateral Triangle
Scalene Triangle

2

6

5
Isosceles Triangle
Rectangle:
Right Angle

- 4 right angles
- opposite sides are parallel and congruent
Square:
Right Angle

• 4 right angles
• 4 congruent sides
• 2 pairs of parallel sides
Parallelogram

- opposite sides are parallel and congruent
Rhombus

- 4 congruent sides
- 2 pairs of parallel sides
- opposite angles are congruent
Trapezoid

- exactly one pair of parallel sides
Translation

an image formed by moving every point on the preimage the same distance in the same direction

pre-image

image
Reflection

an image formed by reflecting the preimage over a line called the line of reflection
Rotation

an image formed by rotating the preimage about a point called the center of rotation
Subdivide

- trapezoid
- parallelogram
- triangle
Combine
Sample Space

Pizza Choices

thin crust
 pepperoni
 cheese
 mushrooms

thick crust
 pepperoni
 cheese
 mushrooms

Tree Diagram
Line Graph

Temperature Over Time

Temperature (°F)

Time

9 a.m. 10 a.m. 11 a.m. 12 p.m. 1 p.m.
Fundamental Counting Principle

If Joe has 4 different color shirts (green, blue, white, and yellow) and 2 different color shorts (tan and black), then he has 4×2 or 8 different outfits to wear.
Line Plot

Number of Pets

X X
X X X

1 2 3 4 5

x represents 1 student
Stem-and-Leaf Plot

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7, 8</td>
</tr>
<tr>
<td>2</td>
<td>2, 4, 5, 6, 9</td>
</tr>
<tr>
<td>3</td>
<td>3, 7, 9, 9</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Key: 1| 8 means 18
Mean

fair share or average

6, 9, 8, 8, 9

\[6 + 9 + 8 + 8 + 9 = 40 \]

\[40 \div 5 = 8 \]

mean = 8
Mean:
Fair Share

4, 7, 6, 6, 7

The mean is 6.
Median

the middle value of a data set in ranked order

$$6, 7, 8, 9, 9$$

$$8 = \text{median}$$

$$5, 6, 8, 9, 11, 12$$

$$8.5 = \text{median}$$
Mode
data that occurs most frequently

6, 7, 8, 9, 9
9 = mode

6, 8, 10, 11, 15, 20
no mode

2, 2, 2, 3, 7, 9, 9, 9
2 and 9 = mode
Range

the spread of a set of data

6, 7, 8, 9, 9

6 least value in the data set
9 greatest value in the data set

range = 9 – 6 = 3
Patterns

8, 10, 13, 17, __

<table>
<thead>
<tr>
<th>Rule: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>145</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>?</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>
Expression

a representation of a quantity

12.8

14 × 351

45 ÷ 8
Variable Expression

an expression that contains numbers, operations, and variables

$4 + s$

variable
Equation

\[3 + 5 = 10 - 2 \]

\[6 - x = 4 \]

\[12 \div 4 = y \]

\[8n = 56 \]
Equality

400 − 177 = 399 − 176
25 × 5 = 250 ÷ 2
1.8 × 5 = 18 ÷ 2
Inequality

\[5 + 6 \neq 11 - 5 \]

\[9 - \frac{8}{9} \neq 2\frac{2}{3} \times 3 \]

\[0.5 \times 7 \neq 3.5 + 5 \]