Grade 8 Mathematics
Vocabulary Word Wall Cards

Mathematics vocabulary word wall cards provide a display of mathematics content words and associated visual cues to assist in vocabulary development. The cards should be used as an instructional tool for teachers and then as a reference for all students. The cards are designed for print use only.

Table of Contents

Number and Number Sense
Comparing Real Numbers
Natural Numbers
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Real Numbers

Computation and Estimation
Square Root - Definition
Square Root - Example
Proportion
Percent of Increase
Percent of Decrease
Reconcile an Account

Measurement and Geometry
Complementary Angles
Supplementary Angles
Vertical Angles
Adjacent Angles
Pyramid
Cone
Volume – Changing One Attribute
Surface Area – Changing One Attribute
Reflection
Translation
Dilation
Reflection and Translation
Three Dimensional Models
Composite figures
Right Triangle

Pythagorean Theorem
Probability and Statistics
Probability of Independent Events
Probability of Dependent Events
Boxplots
Comparing Boxplots
Scatterplot
Positive Linear Relationship
Negative Linear Relationship
No Relationship

Patterns, Functions and Algebra
Term
Constant
Like Terms
Order of Operations
Relations
Functions
Domain
Range
Slope – Definition
Slope
Linear Function
Identifying Slope and y-Intercept
Dependent/independent Variable
Independent Variable
Dependent Variable
Connecting Representations
Multistep Equations
Multistep Equations (model)
Verbal and Algebraic Expressions and Equations
Inequality
Comparing Real Numbers

Values for numbers get smaller as move further to the left on the number line.

\[-\frac{5}{2} < -2 \quad \text{or} \quad -2 > -2\frac{1}{2}\]

Values for numbers get larger as move further to the right on the number line.

\[-\frac{5}{2} < \frac{1}{2} \quad \text{or} \quad \frac{1}{2} > -\frac{5}{2}\]

\[-2 > -2\frac{1}{2} \quad \text{or} \quad -2\frac{1}{2} < -2\]

\[2\frac{1}{2} < \sqrt{8} \quad \text{or} \quad \sqrt{8} > 2\frac{1}{2}\]
Natural Numbers

The set of numbers
1, 2, 3, 4...

Examples
15, \( \frac{8}{1} \), 101, 1, 5.0, \( \sqrt{16} \), \( \frac{10}{2} \)
Whole Numbers
The set of numbers 0, 1, 2, 3, 4...

Examples
19, $\frac{99}{1}$, 953, 1, 7.0, 0, $\sqrt{81}$, $\frac{18}{3}$
Integers

The set of numbers

...-3, -2, -1, 0, 1, 2, 3...

Examples

-13, \( \frac{6}{1} \), 27, \((-3)^2\), 5.0, \(-\sqrt{25}\), 0, \(\frac{22}{11}\)
Rational Numbers

The set of all numbers that can be written as the ratio of two integers with a non-zero denominator.

Examples

$$2\frac{3}{5}, -5, 0, 0.3, \sqrt{16}, 0.66, \frac{13}{7}$$
Irrational Numbers

The set of all numbers that cannot be expressed as the ratio of integers

Examples

\[ \sqrt{7}, \pi, -0.23223222322223... \]
Real Numbers

The set of all rational and irrational numbers
Square Root

any number which, when multiplied by itself, equals the number

\[ \sqrt{25} = 5 \]

\[ \sqrt{25} = \sqrt{5 \cdot 5} = \sqrt{5^2} = 5 \]

Squaring a number and taking a square root are inverse operations.

\[ -\sqrt{36} = -6 \]

\[ (-6)^2 = -6 \cdot -6 = 36 \]
Square Root

\[ \sqrt{10} \approx 3.16 \]

\( \sqrt{10} \) is between \( \sqrt{9} \) and \( \sqrt{16} \)
Proportion

a statement of equality between two ratios

\[
\frac{a}{b} = \frac{c}{d} \quad \text{or} \quad a:b = c:d
\]

\[a\] is to \[b\] as \[c\] is to \[d\]

Example

\[
\frac{2}{5} = \frac{4}{10} \quad \text{or} \quad 2:5 = 4:10
\]

2 is to 5 as 4 is to 10
Percent of Increase

Percent of change = \( \frac{\text{new} - \text{original}}{\text{original}} \cdot 100 \)

What is the percent of increase?

Was $2.25 per gallon

Now $2.55 per gallon

\[
\frac{2.55 - 2.25}{2.55} \cdot 100 = \frac{0.30}{2.55} \cdot 100 = 0.13 \cdot 100 = 13
\]

increase of 13%
Percent of Decrease

Percent of change = \frac{\text{new} - \text{original}}{\text{original}} \cdot 100

What is the percent of decrease?

\[
\frac{900 - 1200}{1200} \cdot 100 = \frac{-300}{1200} \cdot 100 = -0.25 \cdot 100 = -25
\]

decrease of 25%

Was $1200
Now only $900
Reconcile an Account

Joe owed a balance of $147.60 on his credit card account on June 1. Below is a list of transactions that occurred during June.

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/3</td>
<td>Giddy-up Gas</td>
<td>$31.00</td>
</tr>
<tr>
<td>6/7</td>
<td>Payment</td>
<td>$150.00</td>
</tr>
<tr>
<td>6/12</td>
<td>Food-o-rama</td>
<td>$134.12</td>
</tr>
<tr>
<td>6/22</td>
<td>Big Top Pizza</td>
<td>$34.32</td>
</tr>
<tr>
<td>6/28</td>
<td>Bart’s Sport Shop</td>
<td>$16.04</td>
</tr>
</tbody>
</table>

Determine how much he owes on his credit card account after the purchase at Bart’s Sport Shop.

Purchases:
\[-31.00 - 134.12 - 34.32 - 16.04 = -215.48\]

Balance - Purchases: \[-147.60 - 215.48 = -363.08\]

Amount Owed: \[-363.08 + 150.00 = -213.08\]
Complementary Angles

$m\angle 1 + m\angle 2 = 90^\circ$

in each figure
Supplementary Angles

\[ m\angle 1 + m\angle 2 = 180^\circ \]

in each figure
Vertical Angles

\[ \angle 1 \text{ and } \angle 3 \text{ are vertical angles.} \]
\[ \angle 2 \text{ and } \angle 4 \text{ are vertical angles.} \]

\[ \angle 1 \cong \angle 3 \text{ and } \angle 2 \cong \angle 4 \]
Adjacent Angles

$\angle 1$ is adjacent to $\angle 2$
in each figure

Share a common side and a common vertex
Square-Based Pyramid

$V = \frac{1}{3}Bh$

$S.A. = \frac{1}{2}lp + B$

$B =$ area of square base
$p =$ perimeter of base
$h =$ height
$l =$ slant height
Cone

\[ V = \frac{1}{3} \pi r^2 h \]

\[ S.A. = \pi r^2 + \pi r l \]

- \( r \) = radius of base
- \( h \) = height
- \( l \) = slant height
Volume of Rectangular Prism
(Changing one attribute)

Height is multiplied by 2

Original Volume:
\[ V = lwh \]
\[ 8 \cdot 2 \cdot 3 = 48 \text{ cm}^3 \]

New Volume:
\[ V = 8 \cdot 2 \cdot 6 = 96 \text{ cm}^3 \]
Surface Area of a Rectangular Prism (Changing one attribute)

\[ S.A. = 2lw + 2lh + 2wh \]

\[ S.A. = 2(8 \cdot 2) + 2(8 \cdot 3) + 2(2 \cdot 3) \]

\[ S.A. = 32 + 48 + 12 = 92 \text{ units}^2 \]

Height is multiplied by 2

New \( S.A. = 2(8 \cdot 2) + 2(8 \cdot 6) + 2(2 \cdot 6) \)

New \( S.A. = 32 + 96 + 24 = 152 \text{ units}^2 \)
Reflection

a transformation in which an image is formed by reflecting the preimage over a line called the line of reflection (all corresponding points in the image and preimage are equidistant from the line of reflection)

The preimage of triangle DEF is reflected across the y-axis to create the image D’E’F’

<table>
<thead>
<tr>
<th>Preimage</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(1,-2)</td>
<td>D’(-1,-2)</td>
</tr>
<tr>
<td>E(3,-2)</td>
<td>E’(-3,-2)</td>
</tr>
<tr>
<td>F(3,2)</td>
<td>F’(-3,2)</td>
</tr>
</tbody>
</table>
Translation

a transformation in which an image is formed by moving every point on the preimage the same distance in the same direction.

The preimage of rectangle ABCD is translated 5 units to the left and 3 units down to create the image $A'B'C'D'$

<table>
<thead>
<tr>
<th>Preimage</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1,2)</td>
<td>A'(-4,-1)</td>
</tr>
<tr>
<td>B(4,2)</td>
<td>B'(-1,-1)</td>
</tr>
<tr>
<td>C(4,4)</td>
<td>C'(1, 1)</td>
</tr>
<tr>
<td>D(1,4)</td>
<td>D'(-4, 1)</td>
</tr>
</tbody>
</table>
Dilation

center of dilation is (0,0)
scale factor = $\frac{1}{2}$

Preimage | Image
---|---
A(0,4) | A'(0,2)
B(4,0) | B'(2,0)
C(0,0) | C'(0,0)

center of dilation is (0,0)
scale factor = 2

Preimage | Image
---|---
G(0,-2) | G'(0,-4)
H(0,0) | H'(0,0)
J(1,0) | J'(2,0)
L(1,-2) | L'(2,-4)
Reflection and Translation

Figure $\triangle DEF$ is reflected over the $y$-axis and translated up 2 units to create the image $\triangle D'E'F'$.

<table>
<thead>
<tr>
<th>Preimage</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(1,-2)</td>
<td>D'(-1,0)</td>
</tr>
<tr>
<td>E(3,-2)</td>
<td>E'(-3,0)</td>
</tr>
<tr>
<td>F(3,2)</td>
<td>F'(-3,4)</td>
</tr>
</tbody>
</table>
Three Dimensional Models

front   side   top

front   side   bottom
Right Triangle

In a right triangle, the hypotenuse is the side opposite the right angle. The hypotenuse is the longest side of the right triangle.
Pythagorean Theorem

$$a^2 + b^2 = c^2$$
Composite Figures

Example 1: Subdivide the composite figure into other figures, then determine the perimeter.

Example 2: Subdivide the composite figure into other figures to determine the area of the side of the house.

\[
\text{Area} = (38)(21) + \frac{1}{2}(38)(19) = 798 + 361 = \textbf{1159 ft}^2
\]
Probability of Independent Events

The outcome of one event does not affect the outcome of the other event.

What is the probability of landing on green on the first spin and then landing on yellow on the second spin?

\[
P(\text{green and yellow}) = P(\text{green}) \cdot P(\text{yellow}) = \frac{3}{8} \cdot \frac{1}{4} = \frac{3}{32}
\]
Probability of Dependent Events

The outcome of one event has an impact on the outcome of the other event.

What is the probability of choosing a red jelly bean on the first pick and then without replacing it, choosing a green jelly bean on the second pick?

\[
P(\text{red}) \cdot P(\text{green after red}) = \frac{4}{12} \cdot \frac{2}{11} = \frac{8}{132} = \frac{2}{33}
\]
Boxplots
(Box-and-Whisker Plots)

A graphical representation of the **five-number** summary

- Lower Extreme
- Lower Quartile ($Q_1$)
- Median
- Upper Quartile ($Q_3$)
- Upper Extreme
Comparing Boxplots

Comparing the heights (inches) of high school boys and girls

Heights of boys

Heights of girls

Median

Virginia Department of Education 2018
Grade 8
Mathematics Vocabulary – Card 33
Scatterplot

Illustrates the relationship between two sets of data.
Positive Linear Relationship

Pattern of points slopes from lower left to upper right.

(Generally, as the $x$-coordinates increase in value, the $y$-coordinates increase in value)
Negative Linear Relationship
Pattern of points slopes from upper left to lower right

(Generally, as the $x$-coordinates increase in value, the $y$-coordinates decrease in value)
No Linear Relationship

no relationship exists between the $x$- and $y$-coordinates
Term

$3x + 2y - 8$

3 terms

$-5x^2 + (-2x)$

2 terms

$\frac{2}{3}ab$

1 term
Constant

$4x - 12$

$7 - 2y + x - 6x^2$

$3(x + 3.9) + \frac{8}{9}$
Like Terms

\[ 4x - 3y + 6x - 7 \]

\[ 2y^2 - 3y + 7y^2 \]

\[ -5r^2 - 6 + 2r + 2 \]
Order of Operations

Grouping Symbols

Exponents

Multiplication or Division

Addition

Subtraction
Relation
Any set of ordered pairs

Ordered Pairs
{(-3,3), (0,3), (1,5), (1,-1), (2, -1)}

Table

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
</tr>
</tbody>
</table>
Function

A relation between a set of inputs, called the domain, and a set of outputs, called the range, with the property that each input is related to exactly one output

\{(-1,1), (0,1), (2,3), (4,1)\}

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Domain

The set of all the input values for the independent variable or \( x \)-values (first number in an ordered pair)

\[
\{(\text{-1}, 1), (0, 1), (2, 3), (4, 1)\}
\]

<table>
<thead>
<tr>
<th>( x )</th>
<th>( y )</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

D: \{-1, 0, 2, 4\}
Range

The set of all the output values for the dependent variable or $y$-values (second number in an ordered pair)

$\{(-1,1), (0,1), (2,3), (4,1)\}$
Slope

Represents the rate of change in a linear function or the “steepness” of the line.

\[
\text{slope} = \frac{\text{change in } y}{\text{change in } x} = \frac{\text{vertical change}}{\text{horizontal change}}
\]

Slope = \( \frac{2}{3} \)
Slope

A line with a positive slope slants up to the right.

A line with a negative slope slants down to the right.

A horizontal line has a slope of zero (0).
Linear Function

A linear function can be written as $y = mx + b$ and its graph is a straight line. Its slope represents a constant rate of change.

\[ y = mx + b \]

(slope is $m$ and $y$-intercept is $b$)

Example: \[ y = \frac{-4}{3} x + 5 \]
Identifying Slope and \( y \)-Intercept

\[ y \text{-intercept, } b, \text{ is } 2, \text{ located at (0,2).} \]

\[ \text{slope } m = \frac{-3}{1} = -3 \]

\[ y = -3x + 2 \]
Dependent/Independent Variable

Determine the distance \((d)\) a car will travel going 55 mph.

\[
d = 55h
\]

<table>
<thead>
<tr>
<th>(h)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>165</td>
</tr>
</tbody>
</table>
Independent Variable

\[ y = 2x + 7 \]

\( x \) represents the independent variable (input values or domain)
Dependent Variable

\[ y = 2x + 7 \]

\( y \) represents the dependent variable (output values or range)
Connecting Representations

A bike rents for $4 plus $1.50 per hour.

\[ c = 1.5h + 4 \]

<table>
<thead>
<tr>
<th>( h )</th>
<th>( c )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Multistep Equations

\[2x - 5.7 = -3.4x + 11.04\]

\[\frac{2}{3} (n + 9) = -\frac{5}{6}n\]

\[25 = \frac{6p - 5}{-4}\]
Multistep Equation

$3x + 5 = -3 - x$
## Verbal and Algebraic Expressions and Equations

<table>
<thead>
<tr>
<th>Verbal</th>
<th>Algebraic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A number multiplied by five</td>
<td>(5n)</td>
</tr>
<tr>
<td>The sum of negative two and a number</td>
<td>(-2 + n)</td>
</tr>
<tr>
<td>The sum of half a number and two is five times the number</td>
<td>(\frac{1}{2}y + 2 = 5y)</td>
</tr>
<tr>
<td>Negative three times a number is one-fifth the difference of four times the number and ten</td>
<td>(-3x = \frac{1}{5}(4x - 10))</td>
</tr>
</tbody>
</table>
Inequality

\[-3(n - 4) < 0\]
\[-3n + 12 < 0\]
\[-3n < -12\]
\[n > 4\]

\[
y - \frac{9}{2} > 3(y - \frac{7}{2})
\]
\[
y - \frac{9}{2} > 3y - \frac{21}{2}
\]
\[
y - 3y > -\frac{21}{2} + \frac{9}{2}
\]
\[-2y > -6\]
\[y < 3\]