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[bookmark: natural]Natural Numbers

The set of numbers 
1, 2, 3, 4…
 (
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Natural Numbers
Whole
 Numbers
Integers
Rational Numbers
Irrational Numbers
Rea
l Numbers
)


 (
Natural Numbers
)

[bookmark: whole]
Whole Numbers

The set of numbers 
0, 1, 2, 3, 4…

 (
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Natural Numbers
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Rea
l Numbers
)




[bookmark: integers]
Integers

The set of numbers
…-3, -2, -1, 0, 1, 2, 3…
 (
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Natural Numbers
Whole
 Numbers
Integers
Rational Numbers
Irrational Numbers
Rea
l Numbers
)




[bookmark: rational]
Rational Numbers
 (
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Natural Numbers
Whole
 Numbers
Integers
Rational Numbers
Irrational Numbers
Rea
l Numbers
)





The set of all numbers that can be written as the ratio of two integers with a non-zero denominator
[bookmark: irrational]
2 ,   -5 ,    ,     ,      
Irrational Numbers
 (
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Natural Numbers
Whole
 Numbers
Integers
Rational Numbers
Irrational Numbers
Rea
l Numbers
)






The set of all numbers that cannot be expressed as the ratio of integers

[bookmark: real] ,   ,  -0.23223222322223… 
Real Numbers

 (
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Natural Numbers
Whole
 Numbers
Integers
Rational Numbers
Irrational Numbers
)





The set of all rational and irrational numbers
[bookmark: complex_numbers]
Complex Numbers


 (
Imaginary
 
Numbers
) (
Real
 
Numbers
)





The set of all real and
imaginary numbers


[bookmark: complex_number]Complex Number


a and b are real numbers and i = 

A complex number consists of both real (a) and imaginary (bi) but either part can be 0

	Case
	Example

	a = 0
	0.01i, -i, 

	b = 0
	, 4, -12.8

	a ≠ 0, b ≠ 0
	39 – 6i, -2 + πi


[bookmark: absolute_value]Absolute Value

|5| = 5         |-5| = 5    

 (
  
-6 
   
-5 
   
-4 
   
-3 
   
-2 
    
-1 
    
0
 
    
1
  
 
   
2 
    
3 
    
4 
     
5 
    
6
5 units
5 units
)



The distance between a number
and zero
[bookmark: order_operations]
Order of Operations 
	Grouping Symbols
	( )
{ }
[ ]
|absolute value|
fraction bar

	Exponents
	
an


	Multiplication
Division
	
Left to Right

	Addition
Subtraction
	
Left to Right



[bookmark: expression]
Expression

x

-

34 + 2m 

3(y + 3.9)2 – 
[bookmark: variable]
Variable

2(y + )

9 + x = 2.08

d = 7c - 5

A =  r 2
[bookmark: coefficient]
Coefficient


(-4) + 2x 

-7y 2

 ab – 

πr2


[bookmark: term]
Term

3x + 2y – 8

3 terms

-5x2 – x  

2 terms

ab

1 term
[bookmark: scientific_notation]
Scientific Notation

a x 10n

 and n is an integer

 (
Examples:
Standard Notation
Scientific Notation
17,500,000
1.75 x 10
7
-84,623
-8.4623 x 10
4
0.0000026
2.6 x 10
-6
-0.080029
-8.0029 x 10
-2
)
[bookmark: exponential_form]
Exponential Form
 (
exponent
)
 (
factors
) (
base
)an = a∙a∙a∙a…, a0


Examples:
2 ∙ 2 ∙ 2 = 23 = 8

n ∙ n ∙ n ∙ n = n4 

3∙3∙3∙x∙x = 33x2 = 27x2
[bookmark: negative_exponent]
Negative Exponent


a-n =   , a  0

Examples:
4-2 =  = 

 =  =  = 

(2 – a)-2 =  , a
[bookmark: zero_exponent]
Zero Exponent

a0 = 1, a  0

Examples:
(-5)0 = 1
 (3x + 2)0 = 1
(x2y-5z8)0 = 1
4m0 = 4 ∙ 1 = 4
[bookmark: product_powers]
Product of Powers Property

am ∙ an = am + n 



Examples:  
x4 ∙ x2 = x4+2 = x6

a3 ∙ a = a3+1 = a4

w7 ∙ w-4 = w7 + (-4) = w3

[bookmark: power_power]
Power of a Power Property

(am)n = am · n


Examples: 
(y4)2 = y4∙2 = y8

(g2)-3 = g2∙(-3) = g-6 = 

[bookmark: power_product]
Power of a Product Property

(ab)m = am · bm


 
Examples:  
	
(-3ab)2 = (-3)2∙a2∙b2 = 9a2b2

[bookmark: quotient_powers] =  = 
Quotient of Powers Property

 = am – n, a 0
Examples:
 =  =  = x
=  = y2
[bookmark: power_quotient] = a4-4 = a0 = 1
Power of Quotient Property

= b0

Examples:
=  

[bookmark: polynomial]=  =  =  = 
Polynomial 
	Example
	Name
	Terms

	7
6x
	monomial
	1 term

	3t – 1
12xy3 + 5x4y
	binomial
	2 terms

	2x2 + 3x – 7
	trinomial
	3 terms


	Nonexample
	Reason

	5mn – 8
	variable exponent

	n-3 + 9
	negative exponent



[bookmark: degree_polynomial]Degree of a Polynomial

The largest exponent or the largest sum of exponents of a term within a polynomial

	Example:
	Term
	Degree

	6a3 + 3a2b3 – 21
	6a3
	3

	
	3a2b3
	5

	
	-21
	0

	Degree of polynomial:
	5


[bookmark: leading_coeff]Leading Coefficient

The coefficient of the first term of a polynomial written in descending order of exponents

Examples:
	
7a3 – 2a2 + 8a – 1

-3n3 + 7n2 – 4n + 10

16t – 1
[bookmark: add_polynomials]Add Polynomials

Combine like terms.

Example:
	
	  (2g2 + 6g – 4) + (g2 – g) 
	= 2g2 + 6g – 4 + g2 – g
 (
(Group like terms and add.)
)
	
	= (2g2 + g2) + (6g – g) – 4 
	= 3g2 + 5g – 4  
[bookmark: add_polynomials2]
Add Polynomials

Combine like terms.

Example:

(2g3 + 6g2 – 4) + (g3 – g – 3) 
 (
(Align like terms and add.)
)		

2g3 + 6g2            – 4
  +    g3            – g – 3
[bookmark: subtract_polynomials]3g3 +  6g2  – g – 7
Subtract Polynomials

Add the inverse.

Example:	
   (4x2 + 5) – (-2x2 + 4x -7)
(Add the inverse.)
= (4x2 + 5) + (2x2 – 4x +7)
= 4x2 + 5 + 2x2 – 4x + 7
(Group like terms and add.)
= (4x2 + 2x2) – 4x + (5 + 7)
= 6x2 – 4x + 12
[bookmark: subtract_polynomials2]
Subtract Polynomials

Add the inverse.


Example:	
(4x2 + 5) – (-2x2 + 4x -7)
(Align like terms then add the inverse and add the like terms.)
     4x2          + 5		  4x2         + 5
–(-2x2  + 4x – 7) 	   + 2x2 – 4x + 7
[bookmark: multiply_polynomials]				        6x2 – 4x + 12
Multiply Polynomials

Apply the distributive property.

(a + b)(d + e + f)

(a + b)( d + e + f )

= a(d + e + f) + b(d + e + f)

= ad + ae + af + bd + be + bf
[bookmark: multiply_polynomials2][bookmark: mult_binomials]
Multiply Binomials

Apply the distributive property.

(a + b)(c + d) = 
a(c + d) + b(c + d) =
ac + ad + bc + bd


Example: (x + 3)(x + 2)

= x(x + 2) + 3(x + 2)
= x2 + 2x + 3x + 6
= x2 + 5x + 6
[bookmark: mult_binomials_model]
Multiply Binomials

Apply the distributive property.
 

Example: (x + 3)(x + 2)
 (
1 =
x
 =
Key
:
x
2
 =
) (
x
 + 3
x
 + 2
)	



 

x2 + 2x + 3x +    = x2 + 5x + 6
[bookmark: mult_binomials_graphic]
Multiply Binomials

Apply the distributive property.


Example: (x + 8)(2x – 3)
	     = (x + 8)(2x + -3)
 (
2
x
  
 +   -
3
)				
 (
x
 + 8
)
	2x2
	-3x

	16x
	-24




[bookmark: mult_binomials_squaring]2x2 + 16x + -3x + -24 = 2x2 + 13x – 24
Multiply Binomials:
Squaring a Binomial

(a + b)2 = a2 + 2ab + b2
(a – b)2 = a2 – 2ab + b2
Examples:
(3m + n)2 = 9m2 + 2(3m)(n) + n2
         = 9m2 + 6mn + n2 

(y – 5)2 = y2 – 2(5)(y) + 25
 			= y2 – 10y + 25

[bookmark: mult_binomials_sum_difference]
Multiply Binomials: Sum and Difference

(a + b)(a – b) = a2 – b2

Examples:
(2b + 5)(2b – 5) = 4b2 – 25

(7 – w)(7 + w) = 49 + 7w – 7w – w2
		      = 49 – w2
[bookmark: factors_monomial]Factors of a Monomial

The number(s) and/or variable(s) that are multiplied together to form a monomial
	Examples:
	Factors
	Expanded Form

	5b2
	5∙b2
	5∙b∙b

	6x2y
	6∙x2∙y
	2∙3∙x∙x∙y

	
	 ∙p2∙q3
	 ·(-5)∙p∙p∙q∙q∙q



[bookmark: factoring_gcf]
Factoring: Greatest Common Factor

Find the greatest common factor (GCF) of all terms of the polynomial and then apply the distributive property.

Example: 	      20a4 + 8a

2 ∙ 2 ∙ 5 ∙ a ∙ a ∙ a ∙ a  +  2 ∙ 2 ∙ 2 ∙ a
 (
common
 factors
)
GCF = 2 ∙ 2 ∙ a = 4a

20a4 + 8a = 4a(5a3 + 2)
[bookmark: factoring_perfsquare]Factoring: Perfect Square Trinomials

a2 + 2ab + b2 = (a + b)2
a2 – 2ab + b2 = (a – b)2

Examples:  
x2 + 6x +9 	= x2 + 2∙3∙x +32
					= (x + 3)2
  	
4x2 – 20x + 25 	= (2x)2 – 2∙2x∙5 + 52 						= (2x – 5)2

[bookmark: factoring_difference_squares]
Factoring: Difference of Two Squares

a2 – b2 = (a + b)(a – b)


Examples:  
x2 – 49 = x2 – 72 = (x + 7)(x – 7)

4 – n2 = 22 – n2 = (2 – n) (2 + n)

		9x2 – 25y2 = (3x)2 – (5y)2 
	     = (3x + 5y)(3x – 5y)
[bookmark: difference_2squares][bookmark: sum_diff_cubes]
Factoring: Sum and Difference of Cubes

a3 + b3 = (a + b)(a2 – ab + b2)
a3 – b3 = (a – b)(a2 + ab + b2)

Examples:

27y3 + 1 = (3y)3 + (1)3
			 = (3y + 1)(9y2 – 3y + 1)

x3 – 64 = x3 – 43 = (x – 4)(x2 + 4x + 16)

 

[bookmark: diff_squares_model]Difference of Squares

 (
b
a
a
b
)a2 – b2 = (a + b)(a – b)
 (
a
2 
–
 b
2
)


 (
a
(
a 
–
 b
)
 
+ 
b
(
a
 –
 b
)
) (
(
a + b
)(
a
 – 
b
)
)
 (
a 
+ 
b
a – b 
) (
b
a
a – b 
a – b 
)


[bookmark: divide_polynomials]
Divide Polynomials

Divide each term of the dividend by the monomial divisor

Example:
(12x3 – 36x2 + 16x)  4x

	= 

	=    + 

	= 3x2 – 9x + 4

[bookmark: divide_polynomials_binomial]
Divide Polynomials by Binomials

Factor and simplify

Example:
(7w2 + 3w – 4)  (w + 1)

	= 

	= 

	= 7w – 4 

[bookmark: prime_poly]
Prime Polynomial
Cannot be factored into a product of lesser degree polynomial factors
	Example

	r

	3t + 9

	x2 + 1

	5y2 – 4y + 3







	Nonexample
	Factors

	x2 – 4
	(x + 2)(x – 2)

	3x2 – 3x + 6
	3(x + 1)(x – 2)

	x3
	xx2




[bookmark: square_root]Square Root

 (
radical
 symbol
radicand
 or argument 
) 



Simply square root expressions.
Examples:
 =  =  = 3x

- = -(x – 3) = -x + 3

Squaring a number and taking a square root are inverse operations.
[bookmark: cube_root]Cube Root
 (
index
)
 (
radical
 symbol
) (
radicand
 or argument
) 


Simplify cube root expressions.
Examples:
 =  = 4

 =  = -3

 = x

Cubing a number and taking a cube root are inverse operations.
[bookmark: nth_root]nth Root
 (
index
)
 (
radicand
 or argument
) (
radical
 symbol
)= 



Examples:

 =  = 

 
 = 


[bookmark: product_radicals]
Product Property of Radicals

The square root of a product equals 
the product of the square roots 
of the factors.

 =  ∙ 
a ≥ 0 and b ≥ 0
Examples:
 =  ∙ = 2
 =  ∙  = a
[bookmark: quotient_radicals]=  =  ∙  = 2
Quotient Property
of Radicals

The square root of a quotient equals the quotient of the square roots of the numerator and denominator.
 =  
a ≥ 0 and b ˃ 0
Example:
 =  = , y ≠ 0
[bookmark: zero_product]
Zero Product Property

If ab = 0,
then a = 0 or b = 0.

Example:
(x + 3)(x – 4) = 0
(x + 3) = 0 or (x – 4) = 0
x = -3 or x = 4

[bookmark: solutions_zeros]The solutions are -3 and 4, also called roots of the equation.
Solutions or Roots

x2 + 2x = 3
Solve using the zero product property.

x2 + 2x – 3 = 0
(x + 3)(x – 1) = 0
x + 3 = 0     or     x – 1 = 0
x = -3 or x = 1
[bookmark: zeros]
The solutions or roots of the polynomial equation are -3 and 1.
Zeros 
The zeros of a function f(x) are the values of x where the function is equal to zero. 
 (
f(
x)
 = 
x
2
 + 2
x
 – 3
Find 
f
(
x
)
 = 0
.
0 = 
x
2
 + 2
x
 – 3
0 = (
x
 + 3
)(
x
 – 1)
x
 = 
-3
 or 
x
 = 
1
The 
zeros
 are 
-3
 and 
1
 located at 
(-3
,0
)
 and 
(1,0).
)[image: ]






The zeros of a function are also the solutions or roots of the related equation.
[bookmark: x_intercept]
x-Intercepts

The x-intercepts of a graph are located where the graph crosses the x-axis and where f(x) = 0. 

 (
f(
x)
 = 
x
2
 + 2
x
 – 3
0 = (
x
 + 3
)(
x
 – 1)
0 = 
x
 + 3 or 0 = 
x
 – 1 
x
 = -3 or 
x
 = 1
The zeros are -3 and 1.
The 
x
-intercepts
 are
:
-3
 or 
(-3,0)
1 
or 
(1,0)
)
[image: ]





[bookmark: coordinate_plane]Coordinate Plane
[image: ]
[bookmark: x_intercept2][bookmark: linear_equation]Linear Equation
Ax + By = C
(A, B and C are integers; A and B cannot both equal zero.)
 (
y
)
Example: 

   -2x + y = -3
 (
x
)


[bookmark: standard_form]The graph of the linear equation is a straight line and represents all solutions (x, y) of the equation.

[bookmark: linear_equation_std_form]Linear Equation: Standard Form 

Ax + By = C 

(A, B, and C are integers; 
A and B cannot both equal zero.)

Examples:
4x + 5y = -24
x – 6y = 9
[bookmark: literal_eq]Literal Equation

A formula or equation which consists primarily of variables

Examples:
ax + b = c
A =  
V = lwh
F =  C + 32
[bookmark: vertical_line]A = πr2
Vertical Line
x = a
 (where a can be any real number)

Example: 			x = -4
 (
y
)

 (
x
)

[bookmark: horizontal_line] (
Vertical lines have
 
an 
undefined slope.  
)
Horizontal Line

y = c
(where c can be any real number)

 (
y
)Example:			y = 6



 (
x
)

[bookmark: quadratic_eq] (
Horizontal lines have
 a slope 
of
 0.
)
Quadratic Equation
ax2 + bx + c = 0
a  0

Example: x2 – 6x + 8 = 0
	Solve by factoring
	Solve by graphing

	
x2 – 6x + 8 = 0
(x – 2)(x – 4) = 0
(x – 2) = 0 or (x – 4) = 0 
x = 2  or x = 4
	 (
x
) (
y
)[image: ] Graph the related function f(x) = x2 – 6x + 8. 


 (
Solutions to the equation are 2 and 4
; 
the 
x
-coordinates where the 
curve crosses the x-axis
.
)
[bookmark: quadratic_eq_2]Quadratic Equation

ax2 + bx + c = 0 
a  0

Example solved by factoring:
	x2 – 6x + 8 = 0
	Quadratic equation

	(x – 2)(x – 4) = 0
	Factor

	(x – 2) = 0 or (x – 4) = 0
	Set factors equal to 0

	x = 2 or x = 4
	Solve for x


 

Solutions to the equation are 2 and 4.
[bookmark: quadratic_eq_3]
Quadratic Equation
ax2 + bx + c = 0
a  0

Example solved by graphing: 
[image: ]x2 – 6x + 8 = 0

[bookmark: quadratic_eq_solutions] (
Solutions to the equation are the 
x
-coordinates
 (2 and 4) of the points where the curve crosses the x-axis.
) (
Graph the related function
     
f
(
x
)
 = 
x
2
 – 6
x
 + 8.
)
Quadratic Equation: Number of Real Solutions

ax2 + bx + c = 0, a  0
	Examples
	Graphs
	Number of Real Solutions/Roots

	x2 – x = 3
	[image: ]
	2

	x2 + 16 = 8x
	[image: ]
	1 distinct root
with a multiplicity of two

	2x2 – 2x + 3 = 0
	[image: ]
	0


[bookmark: id_prop_add]Identity Property of Addition

a + 0 = 0 + a = a

Examples: 
3.8 + 0 = 3.8

6x + 0 = 6x

0 + (-7 + r) = -7 + r

[bookmark: inverse_prop_add]Zero is the additive identity.
Inverse Property of Addition

a + (-a) = (-a) + a = 0

Examples: 
4 + (-4) = 0

0 = (-9.5) + 9.5

x + (-x) = 0

[bookmark: comm_prop_add]0 = 3y + (-3y) 
Commutative Property of Addition

a + b = b + a

Examples:
2.76 + 3 = 3 + 2.76
x + 5 = 5 + x
(a + 5) – 7 = (5 + a) – 7
[bookmark: assoc_prop_add]11 + (b – 4) = (b – 4) + 11
Associative Property of Addition 

(a + b) + c = a + (b + c)

Examples:



[bookmark: id_prop_mult]3x + (2x + 6y) = (3x + 2x) + 6y 
Identity Property of Multiplication

a ∙ 1 = 1 ∙ a = a


Examples:
3.8 (1) = 3.8

6x ∙ 1 = 6x

1(-7) = -7

One is the multiplicative identity.
[bookmark: inverse_prop_mult]Inverse Property of Multiplication

a ∙  =  ∙ a = 1
a  0

Examples:
7 ∙  = 1
 ∙  = 1, x  0
 ∙ (-3p) = 1p = p
[bookmark: comm_prop_mult]The multiplicative inverse of a is .
Commutative Property of Multiplication

ab = ba

Examples:
(-8) = (-8)

y ∙ 9 = 9 ∙ y 

4(2x ∙ 3) = 4(3 ∙ 2x)

8 + 5x = 8 + x ∙ 5
[bookmark: assoc_prop_mult]
Associative Property of Multiplication 

(ab)c = a(bc)

Examples:
(1 ∙ 8) ∙ 3 = 1 ∙ (8 ∙ 3)

 (3x)x = 3(x ∙ x)
[bookmark: distrib_prop]
Distributive Property

a(b + c) = ab + ac
 

Examples:


 2 ∙ x + 2 ∙ 5 = 2(x + 5)

3.1a + (1)(a) = (3.1 + 1)a
[bookmark: distrib_prop_model]
Distributive Property

4(y + 2) = 4y + 4(2)
 (
4
4(y + 2)
)
[bookmark: mult_prop_zero] (
y 
+
 
2
) (
4
y
2
4
y
     
+
   
 
4(2)
)
Multiplicative Property of Zero 

a ∙ 0 = 0 or 0 ∙ a = 0

Examples:
8 · 0 = 0

0 · (-13y – 4) = 0
[bookmark: subst_prop]
Substitution Property

If a = b, then b can replace a in a given equation or inequality. 

Examples:
	Given
	Given
	Substitution

	r = 9
	3r = 27
	3(9) = 27

	b = 5a
	24 < b + 8
	24 < 5a + 8

	y = 2x + 1
	2y = 3x – 2
	2(2x + 1) = 3x – 2




[bookmark: reflex_prop]Reflexive Property of Equality
a = a
a is any real number

Examples:

-4 = -4

3.4 = 3.4

[bookmark: symm_prop]9y = 9y
Symmetric Property of Equality

If a = b, then b = a.


Examples:

If 12 = r, then r = 12.

If -14 = z + 9, then z + 9 = -14.

If 2.7 + y = x, then x = 2.7 + y.

[bookmark: trans_prop]
Transitive Property of Equality

If a = b and b = c, 
then a = c.

Examples:
 If 4x = 2y and 2y = 16, 
then 4x = 16.

If x = y – 1 and y – 1 = -3, 
then x = -3.
[bookmark: inequality]
Inequality

An algebraic sentence comparing two quantities

	Symbol
	Meaning

	<
	less than

	
	less than or equal to

	
	greater than

	
	greater than or equal to

	
	not equal to



Examples:			
-10.5 ˃ -9.9 – 1.2
8 > 3t + 2
x – 5y  -12 
r  3
[bookmark: graph_inequal]
Graph of an Inequality

	Symbol
	Examples
	Graph

	< or 
	x < 3
	[image: ]

	 or 
	-3  y
	[image: ]

	
	t  -2
	[image: ]


[bookmark: trans_prop_inequ]
 Transitive Property of Inequality

	If
	Then

	a  b and b  c 
	a  c

	a  b and b  c 
	a  c



Examples:
 If 4x  2y and 2y  16, 
then 4x  16.

If x  y – 1 and y – 1  3, 
then x  3.
[bookmark: add_subt_prop_ineq]Addition/Subtraction Property of Inequality

	If
	Then

	a > b
	a + c > b + c

	a  b
	a + c  b + c

	a < b
	a + c < b + c

	a  b
	a + c  b + c



Example:
d – 1.9  -8.7
d – 1.9 + 1.9  -8.7 + 1.9
[bookmark: mult_div_prop_ineq]d  -6.8
Multiplication Property of Inequality

	If
	Case
	Then 

	a < b
	c > 0, positive
	ac < bc

	a > b
	c > 0, positive
	ac > bc

	a < b
	c < 0, negative
	ac > bc

	a > b
	c < 0, negative
	ac < bc



Example:  if c = -2
5 > -3
5(-2) < -3(-2)
					 -10 < 6
[bookmark: div_prop_ineq]
Division Property of Inequality
	If
	Case
	Then 

	a < b
	c > 0, positive
	 < 

	a > b
	c > 0, positive
	 > 

	a < b
	c < 0, negative
	 > 

	a > b
	c < 0, negative
	 < 



Example: if c = -4
-90  -4t
  
[bookmark: slope_intercept]22.5  t
Linear Equation: Slope-Intercept Form	
y = mx + b
(slope is m and y-intercept is b)

Example:  y =  x + 5
 (
(0
,5
)
-4
3
)[image: ]
 (
m = 
b = 5
)


[bookmark: point_slope]Linear Equation: Point-Slope Form

y – y1 = m(x – x1)
where m is the slope and (x1,y1) is the point

Example:  
Write an equation for the line that passes through the point (-4,1) and has a slope of 2.
y – 1 = 2(x – -4)
y – 1 = 2(x + 4)
y = 2x + 9

[bookmark: slope_def]Slope

A number that represents the rate of change in y for a unit change in x 

[image: ]


 (
Slope = 
) (
3
2
)






The slope indicates the 
steepness of a line.

[bookmark: slope_formula]Slope Formula

 The ratio of vertical change to
horizontal change
 (
A
B
(
x
1
, 
y
1
)
(
x
2
, 
y
2
)
x
2
 – 
x
1
y
2
 – 
y
1
 
x
y
)
	 








[image: ]
		slope = m =          
[bookmark: slopes_lines]
Slopes of Lines
 (
L
ine 
p
has
 a 
positive slope
.
L
ine 
n
 
has
 a negative slope.
V
ertical line 
s
 
has an 
undefined slope
.
H
orizontal line 
t
 
has
 a zero 
slope
.
)[image: ]


	

[image: ]


[bookmark: perpendicular_lines]
Perpendicular Lines
Lines that intersect to form a right angle
[image: ]

Perpendicular lines (not parallel to either of the axes) have slopes whose product is -1.
 (
Example:
 
The 
slope
 of line
 
n
 = -2
. The 
slope
 of line
 
p
 = 
.
-2 ∙
 
 = -1, therefore, 
n
 
is perpendicular to
 
p
.
)


[bookmark: parallel_lines]Parallel Lines

Lines in the same plane that do not intersect are parallel.
 (
y
x
b
a
)Parallel lines have the same slopes.


		

	

 (
Example:
 
The 
slope
 of line
 
a
 = -2
. 
The 
slope
 of line
 
b
 = -2
.
-2 = -2, therefore, 
a
 
is
 parallel to
 
b
.
)

[bookmark: setbuilder_notation]
Mathematical Notation


	Set Builder
Notation
	Read
	Other Notation

	{x|0 < x  3}
	The set of all x such that x is greater than or equal to 0 and x is less than 3.
	0 < x  3

(0, 3]

	{y: y ≥ -5}
	The set of all y such that y is greater than or equal to -5.
	y ≥ -5

[-5, ∞)


[bookmark: system_lin_eq_graphing]System of Linear Equations

Solve by graphing:
-x + 2y = 3
2x + y = 4
[image: ]
 (
The solution, 
(1, 2), is the 
only 
ordered pair that satisfies 
both
 equation
s 
(
the
 point of intersection)
.
)



[bookmark: system_lin_eq_substitution]
System of Linear Equations

Solve by substitution:
x + 4y = 17
y = x – 2

Substitute x – 2 for y in the first equation.
x + 4(x – 2) = 17
x = 5
Now substitute 5 for x in the second equation.
y = 5 – 2
y = 3
The solution to the linear system is (5, 3),
the ordered pair that satisfies both equations.
[bookmark: system_lin_eq_elimination]System of Linear Equations
Solve by elimination:
-5x – 6y = 8
5x + 2y = 4

Add or subtract the equations to eliminate one variable.
 -5x – 6y = 8
+ 5x + 2y = 4
            -4y = 12 
              y = -3
Now substitute -3 for y in either original equation to find the value of x, the eliminated variable.
-5x – 6(-3) = 8
                x = 2
The solution to the linear system is (2,-3), the ordered pair that satisfies both equations.
[bookmark: system_lin_eq][bookmark: system_lin_eq_solutions]System of Linear Equations
	
Identifying the Number of Solutions
	Number of Solutions
	Slopes and 
y-intercepts
	 (
x
y
)Graph

	One solution
	Different slopes
	 (
x
y
)

	No solution
	Same slope and
different y-intercepts
	 (
x
y
)

	Infinitely many solutions
	Same slope and
same y-intercepts
	


[bookmark: lin_ineq_graph][bookmark: system_lin_quad][bookmark: graph_linear_ineq]Graphing Linear Inequalities
	Example
	Graph

	y  x + 2
	[image: ] (
y
) (
x
)

	y > -x – 1
	 (
y
) (
x
)[image: ]


[bookmark: system_lin_ineq]System of Linear Inequalities

Solve by graphing:
y  x – 3
 (
y
)y  -2x + 3
[image: ] (
The solution region contains all ordered pairs that are solutions to 
both
 inequalities in the system.
(-1
,1
) is 
one
 solution to the system
 located in the solution region
.
)

 (
x
)



[bookmark: dependent_indep_var][bookmark: linear_programming]Linear Programming

An optimization process consisting of a system of constraints and an objective quantity that can be maximized or minimized
 
Example:
Find the minimum and maximum value of the objective function C = 4x + 5y, subject to the following constraints.
[image: ]x  0
 (
(6
,0
)
(0
,0
)
(0
,6
)
feasible
 region
)y  0
 (
x
 + 
y
 
 6
)x + y  6




The maximum or minimum value for C = 4x + 5y will occur at a corner point of the feasible region.

Dependent and
Independent Variable

x, independent variable
(input values or domain set)

Example:
y = 2x + 7 

y, dependent variable
(output values or range set)

[bookmark: dependent_indep_var_ex]Dependent and
Independent Variable

Determine the distance a car will travel going 55 mph.
	h
	d

	0
	0

	1
	55

	2
	110

	3
	165



d = 55h
 (
dependent
) (
independent
)



[bookmark: graph_quad_eq]
Graph of a Quadratic Equation
y = ax2 + bx + c
a  0
 (
y
)Example:    
     y = x2 + 2x – 3


 (
line
 of symmetry
) (
x
)
 (
vertex
)
[bookmark: quad_formula]The graph of the quadratic equation is a curve (parabola) with one line of symmetry and one vertex.
Quadratic Formula

 Used to find the solutions to any quadratic equation of the form,  y = ax2 + bx + c


x = 



[bookmark: raltion_examples]Relations
Representations of relationships

	x
	[image: ]y

	-3
	4

	0
	0

	1
	-6

	2
	2

	5
	 (
Example
 
2
)-1


 (
Example
 1
)
{(0,4), (0,3), (0,2), (0,1)}
[bookmark: function_examples] (
Example
 
3
)
Functions
Representations of functions
[image: ]
	x
	y

	3
	2

	2
	4

	0
	2

	-1
	2


[bookmark: function_def] (
Example
 
4
) (
Example
 
3
) (
Example
 
2
) (
Example
 1
) (
x
) (
y
)[image: ] (
{(-3
,4
), (0,3), (1,2), (4,6)}
)
Function

A relationship between two quantities in which every input corresponds to exactly one output
 (
Y
) (
X
) (
2
4
6
8
10
) (
10
7
5
3
)



A relation is a function if and only if each element in the domain is paired with a unique element of the range.

[bookmark: domain]Domain

A set of input values of a relation

Examples:
	input
	output

	x
	g(x)

	-2
	0

	-1
	1

	0
	2

	1
	3


 (
f
(
x)
)


 (
x
)
[bookmark: range] (
The 
domain
 of 
g
(
x
)
 
is {
-2, -1, 0, 1
}.
) (
The 
domain
 of 
f
(
x
) is 
all real numbers
.
)
Range

A set of output values of a relation

 (
f
(
x)
)Examples:
	input
	output

	x
	g(x)

	-2
	0

	-1
	1

	0
	2

	1
	3




 (
x
)
 (
The 
range
 of 
f
(
x
) is 
all real numbers greater than or equal to zero
.
) (
The 
range
 
of g(x) 
is 
{
0, 1, 2, 
3
}.
)

[bookmark: function_notation]Function Notation

  f(x)

f(x) is read 
“the value of f at x” or “f of x”

Example:
f(x) = -3x + 5, find f(2).
f(2) = -3(2) + 5
f(2) = -6

Letters other than f can be used to name functions, e.g., g(x) and h(x)
[bookmark: parent_functions]
Parent Functions
 (
y
)
	Linear
 (
x
)    f(x) = x

 (
y
)
    Quadratic
    f(x) = x2
 (
x
)

[bookmark: absvalue_sqroot]Parent Functions
[image: ]    
Absolute Value 
f(x) = |x| 

[image: ]
Square Root 
f(x) = 
[bookmark: cubic_cuberoot]
Parent Functions
[image: ]	
Cubic 
f(x) = x3

[image: ]
 (
Cube Root 
 
f(
x)
 =
 
) 	
[bookmark: rational_func]

[bookmark: exponent_log][image: ]Parent Functions

Exponential
f(x) = bx
	b > 1

[image: ]Logarithmic
f(x) = 
	b > 1


[bookmark: trans_parent_func][bookmark: translation]Transformations of Parent Functions

Parent functions can be transformed to create other members in a 
family of graphs.

	Translations
	g(x) = f(x) + k
is the graph of f(x) translated vertically –
	k units up when k > 0.

	
	
	k units down when k < 0.

	
	g(x) = f(x − h)
is the graph of f(x) translated horizontally –
	h units right when h > 0.

	
	
	h units left when h < 0.


[bookmark: trans_linear]

[bookmark: reflection]Transformations of Parent Functions

Parent functions can be transformed to create other members in a 
family of graphs.

	Reflections
	g(x) = -f(x)
is the graph of f(x) –
	reflected over the x-axis.

	
	g(x) = f(-x)
is the graph of f(x) –
	reflected over the y-axis.




[bookmark: dilation]Transformations of Parent Functions

Parent functions can be transformed to create other members in a 
family of graphs.

	Dilations
	g(x) = a · f(x)
is the graph of f(x) –
	vertical dilation (stretch)
 if a > 1.

	
	
	vertical dilation (compression) if 0 < a < 1.

	
	g(x) = f(ax)
is the graph of f(x) –
	horizontal dilation (compression) if a > 1.

	
	
	horizontal dilation (stretch) if 0 < a < 1.


[bookmark: linear_verticaltrans]Transformational Graphing
Linear functions
g(x) = x + b
 (
y
) (
Examples:
f(
x)
 =
 x
t
(
x)
 = 
x
 + 4
h(
x)
 =
 
x
 – 2 
)

 (
x
)

[bookmark: linear_graph2]Vertical translation of the parent function, f(x) = x
Transformational Graphing
Linear functions
g(x) = mx
 (
y
)m>0
 (
Examples:
f(
x)
 =
 x
t
(
x)
 = 2
x
h(
x)
 =
 
x
)
 (
x
)



[bookmark: linear_graph3]Vertical dilation (stretch or compression) of the parent function, f(x) = x 
Transformational Graphing
Linear functions
g(x) = mx
 (
y
)m < 0
 (
Examples:
f(
x)
 =
 x
t
(
x)
 = -
x
h(
x)
 = -3
x
d(
x)
 =
 
- 
x
)[image: ]
 (
x
)



[bookmark: quad_graph1]Vertical dilation (stretch or compression) with a reflection of f(x) = x 
Transformational Graphing
Quadratic functions
h(x) = x2 + c
 (
y
)
 (
x
) (
Examples:
f(
x)
 =
 x
2
g(
x)
 = 
x
2
 + 2
t
(
x)
 = 
x
2
 – 3
)






[bookmark: quad_graph2]Vertical translation of f(x) = x2
Transformational Graphing
Quadratic functions
h(x) = ax2
 (
y
)a > 0

 (
x
) (
Examples:
    
f(
x)
 =
 x
2
   
g(
x)
 = 2
x
2
   
t
(
x)
 = 
x
2
)





[bookmark: quad_graph3]Vertical dilation (stretch or compression) of f(x) = x2
Transformational Graphing
Quadratic functions
h(x) = ax2
 (
y
)a < 0
 (
Examples:
    
f(
x)
 =
 x
2
   
g(
x)
 = -2
x
2
   
t
(
x)
 = 
x
2
)


 (
x
)



[bookmark: quad_graph4]Vertical dilation (stretch or compression) with a reflection of f(x) = x2
Transformational Graphing
Quadratic functions 
h(x) = (x + c)2
 (
y
)
 (
Examples:
f(
x)
 =
 x
2
g(
x)
 = (
x 
+ 2)
2
t
(
x)
 = (
x 
– 3)
2
)



 (
x
)
Horizontal translation of f(x) = x2

[bookmark: inverse_function][bookmark: discontinuity_asymptotes]Discontinuity
Vertical and Horizontal Asymptotes

 (
Example:
f(
x)
 =
 
f(
-2
)
 is not defined, so 
f(
x)
 
is discontinuous.
)[image: ]





 (
vertical
 asymptote
x
 = -2
) (
horizontal
 
asymptote
y 
= 0
)

[bookmark: discontinuity_point]Discontinuity
Removable Discontinuity
Point Discontinuity

 (
Example:
f(
x)
 = 
f
(
2) is not defined.
)[image: ]


 (
f(
x)
 =
 
     
  
= 
    
   
= 
x 
+ 3,
 
x
 
 2
) (
x
f(x)
-3
0
-2
1
-1
2
0
3
1
4
2
error
3
6
)




[bookmark: direct_var]Direct Variation
y = kx  or  k = 
constant of variation, k  0
 (
y
)
Example:
  y = 3x   or   3 = 

 (
x
)



[bookmark: invervse_var]The graph of all points describing a direct variation is a line passing through the origin.

[bookmark: arith_sequence]Arithmetic Sequence

A sequence of numbers that has a common difference between every two consecutive terms

 (
+5
+5
+5
+5
)Example: -4, 1, 6, 11, 16 …
 (
common
 difference
) (
y
)
	Position
x
	Term
y

	1
	 (
+5
+5
+5
+5
)-4

	2
	1

	3
	6

	4
	11

	5
	16



 (
1
5
1
5
)
 

 (
x
)
[bookmark: geom_sequence] (
The common difference is the slope of the line of best fit.
) (
x
)
Geometric Sequence

A sequence of numbers in which each term after the first term is obtained by multiplying the previous term by a constant ratio
 (
x
) (
x
) (
x
) (
x
)Example:   4, 2, 1, 0.5, 0.25 ... 
	Position
x
	Term
y

	1
	 (
x
)4

	2
	 (
x
)2

	3
	 (
x
)1

	4
	 (
x
)0.5

	5
	0.25


 (
y
)
 (
1
4
1
2
) (
common
 ratio
)


 (
x
)


[bookmark: probability]Probability

The likelihood of an event occurring

probability of an event = 

[image: ]Example: What is the probability of drawing 			an A from the bag of letters shown?
	
 (
A
 C C
A
 B 
A
 B
)  			P(A) =  
 (
0
 
 
 
 
1
)


	

[bookmark: probability_independent]
Probability of Independent Events

 (
What is the probability of landing on 
green
 on the first spin 
and
 then landing on yellow on the second spin?
)Example:
 (
Y
) (
G
)[image: ]
 (
B
) (
Y
)
 (
B
) (
G
)
 (
B
) (
G
)


P(green and yellow) =
[bookmark: probability_dependent]P(green) ∙ P(yellow) =  = 
Probability of Dependent Events

Example: 
 (
What is the probability of 
select
ing a 
red j
elly bean on 
the 
first pick 
and
 without replacing it, 
selecting
 a 
blue
 jelly bean on the second pick?
)




P(red and blue) = 
[image: ]
 (
“
blue
 after red”
)  P(red) ∙ P(blue|red) =
[bookmark: mutually_exclusive]Probability
Mutually Exclusive Events

Events are mutually exclusive if they cannot occur at the same time. 

Example:
In a single card draw from a deck of cards, what is the probability of selecting
· [image: http://www.manipulationcards.com/images/2.gif]a king and an ace? P(king and ace) = 0
· a king or an ace? P(king or ace) = P(king) + P(ace)
  P(king) =  
  P(ace) = 
  P(king) + P(ace) =  = 

If two events A and B are mutually exclusive, then 
· P(A and B) = 0; and
· P(A or B) = P(A) + P(B).

[bookmark: fundamental_counting_prin]Fundamental Counting Principle

If there are m ways for one event to occur and n ways for a second event to occur, then there are m  n ways for both events to occur.

Example: 
How many outfits can Joey make using 
3 pairs of pants and 4 shirts?

3 ∙ 4 = 12 outfits
[bookmark: permuation]
Permutation

An ordered arrangement of a group of objects
 (
1
st
 
2
nd
 
3
rd
 
) (
1
st
 
2
nd
3
rd
 
)
is different from               

Both arrangements are included in possible outcomes.  

Example:
5 people to fill 3 chairs (order matters). How many ways can the chairs be filled?
1st chair – 5 people to choose from
2nd chair – 4 people to choose from
3rd chair – 3 people to choose from
# possible arrangements are 5 ∙ 4 ∙ 3 = 60
[bookmark: permuation_formula]
Permutation

To calculate the number of permutations
[image: ]


n and r are positive integers, n ≥ r, and n is the total number of elements in the set and r is the number to be ordered.

Example: There are 30 cars in a car race. The first-, second-, and third-place finishers win a prize. How many different arrangements of the first three positions are possible? 

30P3 =  =  = 24360
[bookmark: combination]
Combination

The number of possible ways to select or arrange objects when there is no repetition and order does not matter

Example: If Sam chooses 2 selections from heart, club, spade and diamond. How many different combinations are possible?

Order (position) does not matter so
[image: ][image: ][image: ][image: ]  is the same as
[image: http://files.wccmth202.webnode.com/200000009-d4b83d5338/combinationalcards.jpg]


There are 6 possible combinations.

[bookmark: combination_formula]Combination

To calculate the number of possible combinations using a formula
[image: ]



n and r are positive integers, n ≥ r, and n is the total number of elements in the set and r is the number to be ordered.

[image: ]Example: In a class of 24 students, how many ways can a group of 4 students be arranged?


[bookmark: stat_notation]Statistics Notation

	
	th element in a data set 

	
	mean of the data set 

	
	variance of the data set

	
	standard deviation of the data set

	
	number of elements in the data set


[bookmark: mean]
Mean

A measure of central tendency

Example: Find the mean of the given data set.
Data set:  0, 2, 3, 7, 8

Balance Point
 (
4
4
2
3
1
  0      1      2     3     
4
     5      6     7     8
)



Numerical Average
[bookmark: median]
Median

A measure of central tendency

Examples: 
Find the median of the given data sets.

		Data set: 6, 7, 8, 9, 9

The median is 8.

		Data set: 5, 6, 8, 9, 11, 12

		             The median is 8.5.
[bookmark: mode]
Mode

	Data Sets
	Mode

	3, 4, 6, 6, 6, 6, 10, 11, 14
	6

	0, 3, 4, 5, 6, 7, 9, 10
	none

	5.2, 5.2, 5.2, 5.6, 5.8, 5.9, 6.0
	5.2

	1, 1, 2, 5, 6, 7, 7, 9, 11, 12
	1, 7
bimodal


A measure of central tendency

Examples:




[bookmark: box_whisker]Box-and-Whisker Plot

A graphical representation of the five-number summary

 (
Lower
Quartile (Q
1
)
Lower
Extreme
Upper
Quartile (Q
3
)
Upper
Extreme
Median
Interquartile Range (IQR)
5
10
15
20
)		

[bookmark: summation] (
A1, A2, AFDA
)Summation
 (
stopping
 point
upper
 limit
)
[image: ]
 (
summation
 sign
)
 (
typical
 element
)

 (
i
ndex
 of summation
) (
starting
 point
lower
 limit
)



This expression means sum the values of x, starting at x1 and ending at xn.
[image: ]
 (
= 
x
1
 + 
x
2
 + 
x
3 
+ … + 
x
n
)


   Example: Given the data set {3, 4, 5, 5, 10, 17}

[bookmark: mean_abs_dev]
Mean Absolute Deviation

A measure of the spread of a data set 


	Mean Absolute Deviation

	=
	





The mean of the sum of the absolute value of the differences between each element and the mean of the data set


[bookmark: variance]Variance
	
A measure of the spread of a data set 


[image: ]




The mean of the squares of the differences between each element and the mean of the data set

[bookmark: SD]
Standard Deviation


A measure of the spread of a data set




[image: ]




The square root of the mean of the squares of the differences between each element and the mean of the data set or the square root of the variance


[bookmark: SD_graphic]Standard Deviation
A measure of the spread of a data set
[image: ]



[image: ] (
Smaller
 
 
Larger
 
)









Comparison of two distributions with same mean and different standard deviation values

[bookmark: zscore]z-Score

The number of standard deviations an element is away from the mean
[image: ]




where x is an element of the data set, μ is the mean of the data set, and σ is the standard deviation of the data set.

Example: Data set A has a mean of 83 and a standard deviation of 9.74. What is the z‐score for the element 91 in data set A? 
	
z =  = 0.821	

[bookmark: zscore_graphic]z-Score

The number of standard deviations an element is from the mean

	
	

	

	


[image: ]








	

 (
z
 = 
1
z 
= 
2
z
 = 
3
z
 = -
1
z
 = -
2
z
 = -
3
z
 = 0
)


[bookmark: normal_distrib]
[bookmark: one_SD][image: ] (
approximate
 percentage of element distribution
) (
Normal Distribution
) (
Z
=
1
) (
Given 
μ
 = 45 
and
 
σ
 = 
24
) (
Elements within one standard deviation of the mean
)
 (
Mean
) (
X
) (
X
) (
Elements within one standard deviation of the mean
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
5
10
15
20
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
) (
X
)Elements within One Standard Deviation (σ)of the Mean (µ)
[bookmark: scatterplot]Scatterplot

Graphical representation of the relationship between two numerical sets of data
 (
x
y
)



[bookmark: positive_correl]
Positive Correlation

In general, a relationship where the dependent (y) values increase as independent values (x) increase
 (
x
y
)



[bookmark: negative_correl]
Negative Correlation

In general, a relationship where the dependent (y) values decrease as independent (x) values increase.
 (
x
y
)



[bookmark: constant_correl]

[bookmark: no_correl]No Correlation

 No relationship between the dependent (y) values and independent (x) values. 
 (
x
y
)



[bookmark: curve_best_fit]
Curve of Best Fit

 (
Calories and Fat Content
)[image: ][image: ]
[bookmark: curve_best_fit_2A]
Curve of Best Fit

[image: ]
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