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Abstract 

Much of the development that is done with Item Response Theory depends 

on the property of item parameter invariance and the stability of 

measurement scales.  In particular, adaptive testing requires stable 

measurement scales as do accountability systems like No Child Left 

Behind.  This study examined drift in item difficulty estimates for several 

thousand test questions associated with reading and mathematics 

measurement scales over a period of 22 years.  Results showed very high 

correlations between item difficulty estimates from the time at which they 

where originally calibrated and the current calibration.  Further, the 

average drift in item difficulty estimates was less than .01 standard 

deviations.  Finally, the average impact of change in item difficulty 

estimates was less than the smallest reported difference on the score scale 

for two actual tests.  While the findings of the study depend on the 

developmental processes used in creating the measurement scale, they 

indicate that an IRT scale can be stable enough to allow consistent 

measurement for more than two decades. 
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A Long-Term Study of the Stability of  

Item Parameter Estimates and Measurement Scales 

 

Item Response Theory (IRT:  Lord & Novick, 1968; Lord, 1980) derives part of its 

appeal from the fact that it allows the creation of measurement scales that are 

independent of the particular sample of individuals or test questions used to create the 

scales, and invariant when applied to particular groups of individuals within the 

population of interest.  Lord and Novick (1968, pp 360) describe these properties in this 

manner 

 

“Because of its definition, the item characteristic function necessarily 

remains invariant from one group of examinees to the next, at least among 

those groups used in defining the complete latent space.  This means that 

any parameter describing the item characteristic function is an invariant 

item parameter.” 

 

This invariance property is exceptionally valuable, because it provides us with the 

capacity to build measurement scales that can be expected to maintain their measurement 

characteristics, even though we modify test forms, or implement an adaptive test.  The 
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most direct application of the invariance property is seen in the development of item 

banks using IRT (Vale, 1986; van der Linden, 1986). 

In practice, IRT item parameter estimates will not be invariant.  Estimates will 

vary due to a number of factors that have been researched fairly extensively in the past.  

These factors include sampling fluctuation (Swaminathan & Gifford, 1983), departures 

from unidimensionality (Bejar, 1980), and other characteristics of the calibration design 

such as item context (Yen, 1980).   

To make matters more complex, the type of test used to create item parameter 

estimates and the algorithm used to compute the estimates will also influence the stability 

of the item parameter estimates (Jae-Chun Ban, et al, 2001).  All of these factors that may 

affect the accuracy of item parameter estimates suggest that we should be cautious in 

relying on the invariance property of IRT in practical settings without verification.    

As we add items to an item bank, these factors may cause long-term drift in item 

parameter estimates and trait level estimates for test takers.  For instance, a small 

departure from unidimensionality may make a group of items that are being added to an 

item bank appear slightly easier than they actually are.  This will probably have little 

impact in the first year that the items are used operationally.  However, the use of these 

items to help calibrate new field test items may cause the new field-test items to have 

difficulty estimates that are slightly more biased cumulatively.  Over the course of several 

years, this could cause the entire scale to drift, reducing our ability to make long-term 

statements about student performance. 

Even though long-term scale stability is imperative to our ability to observe 

patterns of growth across time, few studies have examined the long-term stability of IRT 
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item parameter estimates.  Two studies that have investigated the issue were conducted 

by Bock, Muraki, and Pfeiffenberger (1988) and by Sykes and Fitzpatrick (1992). 

Bock, et al. (1988) investigated the stability of the item parameter estimates in the 

3-parameter logistic IRT model from the College Board Physics Achievement Test over a 

period of ten years using an ANOVA design and looking for a two-way interaction 

between items and occasions.  The authors found that there was a statistically significant 

drift in item difficulty across time.  The authors interpreted the drift as being due to 

changes in physics instruction across the time period under investigation.  The authors 

performed a similar analysis of the College Board English Achievement Test, and found 

no evidence of drift.  Since the focus of this study was on the development of a statistical 

model to allow for drift, rather than on the drift itself, the authors did not discuss the 

impact of the observed drift on test scores. 

Sykes and Fitzpatrick (1992) investigated the stability of 1-parameter logistic item 

parameter estimates for 285 items from a professional licensure test administered over a 

period of five years.  This study found drift in item difficulty parameter estimates that 

was directional, with items being estimated to be more difficult across time.  When the 

investigators examined the source of the drift, it did not seem to be associated with item 

position or item type.  As in the previous study, the authors hypothesized that the change 

in difficulty estimates was associated with changes in curricular emphasis.  Since the 

emphasis in this study was on the covariates of drift, the authors didn’t discuss the 

magnitude of change in candidate scores that might be caused by drift in item difficulty 

estimates. 
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The current study extends this earlier work in several ways.  First, it investigates 

stability of item parameter estimates in two large item banks used to measure 

achievement in mathematics and reading, rather than parameter estimates from a set of 

items used in a single test.  Second, it uses measurement scales that have been designed 

to measure student growth across time.  Third, it uses a longer elapsed time since initial 

calibration, ranging from 7 to 22 years.  Fourth, it attempts to estimate the amount of 

impact that item parameter drift might have on student scores.  Primary questions to be 

addressed in this study are 

 

1) How much drift in item parameter estimates is seen in item calibrations 

separated by as much as 22 years? 

2) Is the magnitude of item-parameter drift associated with the elapsed time 

since the original item calibration? 

3) What impact does this observed drift have on trait level estimates for test 

takers? 

 

The stability of measurement scales may be viewed through two lenses.  Using 

the first lens, we may investigate whether individual items have changes in their 

difficulty estimates across time.  If there is more change (drift) than expected due to 

sampling variability, we may identify this as a problem with the invariance assumption.  

Using the second lens, we may ask what impact any identified drift may have on the test 

scores from our assessments and what impact the drift may have on decisions that are 
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made as a result of the assessments.  The questions asked in this study allow us to 

investigate the issue through both lenses. 

It should be noted that this study is not an analysis of calibration procedures.  It is 

fairly clear that procedures for calibration have improved over the 22 years encompassed 

by this study.  The question this study addresses is whether calibration estimates change 

as a function of time, given the same calibration procedure. 

  

The Measurement Scales 

The measurement scales used in this study are the reading and mathematics scales 

developed by the Northwest Evaluation Association.  These scales, known as the RIT 

scales, are associated with large item banks that are used to develop achievement tests for 

use in a variety of school districts.  The one-parameter logistic (1PL) IRT model (Wright, 

1977) was used to create and maintain the underlying measurement scales used with 

these banks.  The RIT scales are linear transformations of the  scale, originally defined 

with a mean of 200 and a standard deviation of 10.  Over the course of time, the mean 

performance level and standard deviation of student performance has changed, but the 

relationship between the RIT scale and the skills needed to obtain a given RIT score have 

remained constant. 

Since the 1970s, thousands of items have been added to these item banks.  Each 

item has been connected to the original measurement scale through the use of IRT 

procedures and systematic measurement practices (Ingebo, 1997).  Each item has been 

connected to the original measurement scale through the use of IRT procedures and 

systematic calibration design. 
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These measurement scales are used to develop adaptive tests and to measure 

individual student growth.  Since both of these activities depend to a great extent on the 

item parameter estimates, it is crucial that the invariance assumption hold in this 

application.  While some variability in item parameter estimates is expected, too much 

variability could cause growth measurement to be quite problematic.  Growth is a 

difficult quantity to measure under the best conditions, so a stable scale is a prerequisite 

to maintaining accuracy in growth measures. 

  

Method 

Items 

3091 mathematics items and 1728 reading items were administered to students from 

grades 2 to 10 in 10 school districts from 7 different states as a part of their districtwide 

assessment programs in the 1999-2000 school year.  Any particular student took 

approximately 50 mathematics items and 40 reading items.  All items were multiple-

choice, with original item difficulty estimates that were obtained at least 7 years prior to 

the study.  Approximately 320 mathematics test forms and 160 reading test forms were 

used in the study.  Over 100,000 student test events were used for the study. 

 

Tests 

The items were administered within the context of an achievement level test (Kingsbury 

& Houser, 1997).  An achievement level test is a paper-and-pencil test that has 

approximately seven different forms (levels) designed to differ in difficulty.  Students are 

administered a particular form chosen for them individually based on past tests scores or 
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using scores from a routing test.  This design is similar to a two-stage adaptive test (Lord, 

1971) which uses past information in lieu of a first stage.  The original difficulty 

estimates (described below) were used for test design and scoring.   

Any individual student took approximately 50 mathematics items or 

approximately 40 reading items.  Since different achievement level tests were used in the 

different school districts involved in this study, any individual item was seen by only a 

small sample of the students involved.  The combination of all test forms across all 

school districts and grades resulted in the sparse data matrix that was used for calibrating 

all of the items in the study. 

 

Original item difficulty estimates 

The original IRT item difficulty estimates for all of these items were created between 

1977 and 1993.  The mean time between the original calibration and the new calibration 

was 16 years and 1 month.  The original item difficulty estimates were obtained using a 

marginal maximum-likelihood calibration procedure (Houser, Hathaway, & Ingebo, 

1978).   

 

New item difficulty estimates 

The new item difficulty estimates were created using the data collected in the 1999-2000 

school year.  Since few students took the same items and no student took a very large 

percentage of the items, the calibration procedure used was a procedure designed for use 

with adaptive tests and other sparse data structures (Houser, Kingsbury, & Harris, 1997).  
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This procedure was used because it is the direct analog of the marginal maximum-

likelihood calibration procedure originally used to calibrate the items.   

After elimination of items with very small samples, 2359 items were available for 

use in mathematics, and 1392 items were available in reading.  Calibration sample sizes 

for these items ranged from 300 students to over 10,000 students.  A minimum student 

sample size of 300 was established to correspond to the minimum sample size that was 

allowed in the original calibration procedure. 

 

Analysis 

While there are a variety of statistical tools available for identifying parameter estimate 

drift (see Donoghue & Isham, 1998), the use of the 1PL model simplifies matters 

substantially.  In this study, simple differences between original and new difficulty 

estimates were used.  Two analyses were conducted for each measurement scale in the 

study. 

Scale drift analysis.  The scale drift analysis included several aspects.  First, 

correlations between the new and original item difficulty estimates were calculated and 

compared to correlations seen in other studies using the same measurement scales.  Next, 

frequency distributions of the differences between the original item difficulty estimates 

and the new item difficulty estimates were calculated.  These allowed the examination of 

the variability in parameter estimates.  Bias and mean absolute differences were also 

calculated and compared to standard deviations of student performance to begin to 

identify the impact of parameter drift.  Finally, item parameter estimate differences were 

examined as a function of the original calibration date to identify whether the elapsed 
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time between the two calibrations contributed to observed drift.  This last analysis used a 

subset of the available items (2204 items in mathematics and 1253 items in reading) 

because some items were originally calibrated across several testing seasons. 

Impact analysis.  A second method of analyzing the effect of change in 

calibrations over time is to ask whether that change has a noticeable impact on students’ 

scores.  In this analysis two representative test forms used in the study were chosen as 

example tests.  The two forms were middle-difficulty forms used in the fifth grade in a 

suburban school district in Indiana.  For each of these forms two raw-score-to-RIT 

scoring tables were created, one using the original parameter estimates and one using the 

new item parameter estimates (for the 1PL IRT model, a particular number-correct score 

is associated with a single scale score, dependent only on the item parameter estimates).  

The two scoring tables were then compared to identify the maximum difference caused 

by using the new item parameter estimates.  By comparing the scale scores obtained from 

the two sets of calibrations for a particular raw score, we can identify how much a 

particular student’s test score would have changed as a result of the scale drift. 

 

Results 

Scale Drift Analysis 

The observed correlations between the original and new item difficulties estimates were 

.967 in mathematics and .976 in reading.  While these correlations are close to unity, it is 

useful to compare them to correlations obtained in other studies using the same 

measurement scales.  Ingebo (1997) described a series of experiments from the 1970s in 

which multiple, concurrent samples were drawn to calibrate a set of items from these 
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scales, to identify the consistency of the calibrations.  In those studies, the correlations of 

mathematics difficulty estimates across samples ranged from .95 to .99, and the 

correlations for reading items ranged from .96 to .99.  The results from the current study 

mimic those from the studies in which the samples were drawn concurrently. 

Although the correlations provide some evidence of stability, they don’t provide 

information about the differences observed on an item-by-item level.  Figures 1 and 2 

show the frequency distributions of the differences observed subtracting the new 

calibration of item difficulty from the original calibration for each item.  It can be seen 

from these figures that the distributions are fairly symmetric around a difference of zero.  

It can further be seen that few items have difficulty differences of more than ten RIT 

points (approximately one   unit).  The distribution of differences in mathematics has 

items reaching further from zero than reading, but it is useful to remember that the item 

sample in mathematics (N = 2359) is nearly twice as large as the sample in reading (N = 

1392).  Due to this discrepancy in sample sizes, we would expect to see more extreme 

differences in observing the mathematics items. 

[Insert Figures 1 and 2 here] 

Figures 3 and 4 show the relationship between the original item difficulty 

estimates and the new difficulty estimates for each item in each subject area.  The 

relationships appear visually linear, and correspond well to the superimposed line of 

identity.  The figures show no evidence of drift associated with the difficulty of the items, 

and give no indication of a non-linear trend in the item calibrations.  It can be seen by a 

comparison of these two figures that the relationship between the original calibrations 

and the new calibrations for reading is slightly more consistent than that for mathematics.  
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Part of this visual difference is again due to the larger number of items in the 

mathematics comparison, but it is also due to the slightly higher correlation seen in the 

reading results. 

[Insert Figures 3 and 4 here] 

The directional drift (bias or average difference) in item difficulty estimates was -

.11 RIT points in reading and -.17 RIT points in mathematics.  To put this difference in 

context, the standard deviation of students’ scores in sixth grade in the most recent 

norming study done using these measurement scales (NWEA, 2005) was 14.5 RIT points 

in reading and 14.8 RIT points in mathematics.  The drift that has occurred in the scale 

over the 16.1 years of elapsed time in the studied interval has had an impact of 

approximately .01 standard deviations on the mean item difficulty estimate.   

The average absolute difference in parameter estimates was 3.29 RIT points in 

reading and 4.53 RIT points in mathematics.  The median absolute difference was 3 RIT 

points in reading and 4 points in mathematics.  As expected, this difference was larger 

than the directional drift, but still less than one-third of a standard deviation.  Given the 

small values for directional drift, we would expect these differences to balance out in a 

test of reasonable length.  This assumption will be investigated more completely in the 

impact analysis below. 

An additional question of interest is the relationship between the length of time 

since the original calibration and the difference in item difficulty estimates.  Figures 5 

and 6 show the difference in item difficulty estimates as a function of the initial 

calibration date.  Two aspects of these figures are worth noticing.  First, there was no 

noticeable directional impact of elapsed time on difficulty estimates.  This indicates that 
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no easily observable directional drift took place in the scale values.  Second, the 

variability of new difficulty estimates around initial estimates did not seem to vary 

systematically as a function of the time since original calibration.  This indicates that the 

variability seen was a function of elements of the calibration design that is not influenced 

by the time since first calibration. 

[Insert Figures 5 and 6 here] 

 

Impact Analysis 

Figures 7 and 8 show the RIT scores obtained from each number correct score for 

original and new difficulty estimates.  The figures show clearly that the scores from the 

two different sets of item difficulty values are quite small.  The differences in the two sets 

of scores are difficult to discern, since they are so similar. 

[Insert Figures 7 and 8 here] 

For the mathematics test, the maximum difference that could occur was 1.1 RIT 

points and the average magnitude of difference was less than .5 RIT points.  For the 

reading test, the maximum valid difference was again 1.1 RIT points, and the average 

magnitude of difference was .7 RIT points.  Since the smallest observable difference 

between two RIT scores is 1 RIT point, these differences are small enough to be rarely 

observable.  Given a typical distribution of RIT scores, the difference would be less than 

1 RIT point in 99 of 100 cases.  Since the standard error of a score on one or these tests 

would be approximately 4 RIT points, the impact of the change in calibrations would not 

be expected to change instructional decisions. 

 



Page 14 of 29 

 

Discussion and Conclusions 

Two major conclusions from the study are as follows: 

 

1) There was no substantial drift in item difficulty estimates across the 

timeframe of this study, and no trend was seen in changes in difficulty 

estimates as a function of time since initial calibration. 

2) The largest observed change in student scores moving from the 

original calibrations to the new calibrations was 1.1 RIT points, with 

over 99% of expected changes being less that 1 RIT point. 

 

While the overall conclusion of the study is that the measurement scales examined 

are stable across time, some individual items fluctuated noticeably from their original 

calibrations.  This suggests the need for ongoing calibration analysis.  Even with a fairly 

stable scale, individual items may have difficulties that vary across time.  A follow on 

study will investigate the characteristics of these highly variable items.  This study should 

enable us to identify whether the large changes in difficulty for a small number of items 

are possibly due to specific features of certain items or whether they might be due to 

changes in instruction that have reduced (or increased) a student’s opportunity to learn 

the content in the question.  Examples of items that might experience such fluctuation 

include the following: 
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 An example of change specific to the item would be an item asking for a 

definition of the word “radical” which has had three most common definitions 

since the early 1980s. 

 An example of change related to opportunity to learn might be seen in an item 

asking about the characteristics of a retro-virus.  In the late 1970’s only college-

level biology students would have been introduced to the concept, but now it is 

standard content in most high school biology courses. 

 

Building a stable measurement scale is as much an exercise in engineering as it is 

an exercise in calibration.  The measurement scales under consideration here were 

originally designed using a four-square design (Wright, 1977) with multiple cross links 

within and across student grades.  It is expected that this original development has 

contributed to the ongoing stability of the measurement scales studied here.  Therefore, 

while this study has indicated that stable measurement scales can be created in practice, it 

does not suggest that the use of IRT calibration alone will assure scale stability.   

In public education, there is ongoing debate about the quality of schools.  One 

overlooked element that causes the debate to continue is the inconsistent nature of much 

achievement information.  Different tests are used to measure student achievement in 

different grades in many locations.  If there isn’t a consistent measurement scale linking 

these tests, comparison of performance across grades is difficult.  In many cases, score 

equating is used to allow comparison from one year to another.  While this is a useful 

statistical technique, it isn’t designed to create stable measurement scales.   
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A stable measurement scale allows the development of curriculum-referenced 

interpretation of test scores.  For instance, with the mathematics RIT scale, a student who 

was able to complete two-digit addition question correctly would obtain the same score in 

the year 2002 that they would have obtained in 1980.  With this development, changes in 

test scores can be related directly to changes in student capabilities.  In turn, this will 

allow the identification of positive and negative trends in education as they happen. 

The procedures used in creating the measurement scales examined in this study 

have been successful in creating stability.  This is a requirement for good measurement 

and even more important if we are planning to measure change in a school or a nation 

across time.  The results of this study indicate that we can create measurement scales that 

are meaningful not only for short-term comparisons, but for long-term studies as well. 
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Figure 1. 

Frequency of mathematics items as a function of the difference between the original item difficulty 

estimate and the new item difficulty estimate on the RIT scale (rounded to the nearest integer) 
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Figure 2. 

Frequency of reading items as a function of the difference between the original item difficulty estimate and 

the new item difficulty estimate on the RIT scale (rounded to the nearest integer) 
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Figure 3. 

Relationship of original and new item difficulty estimates on the RIT scale for 2359 items 

in mathematics with superimposed identity line (r = .967) 
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Figure 4.  

Relationship of original and new item difficulty estimates on the RIT scale for 1392 items 

in reading with superimposed identity line (r = .976) 
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Figure 5.  

Differences between original RIT difficulty estimates and new RIT difficulty estimates as 

a function of initial date of calibration in mathematics 
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Figure 6.   

Differences between original RIT difficulty estimates and new RIT difficulty estimates as 

a function of initial date of calibration in reading 
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Figure 7. 

RIT scores as a function of obtained number correct score calculated using original and 

new mathematics difficulty estimates 
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Figure 8. 

RIT scores as a function of obtained number correct score calculated using original and 

new reading difficulty estimates 

 

 

 

 



 

 

 

 

 

 

 

 

(This page left intentionally blank) 



 

 

 

 

 

 

 

 

 

Construct Validity and Measurement Invariance of Computerized Adaptive Testing:  

Application to Measures of Academic Progress (MAP) Using Confirmatory Factor Analysis  

 

 

 

 

Shudong Wang 

NWEA 

 

Marty McCall 

Smarter Balance Assessment Consortium  

 

Hong Jiao 

University of Maryland 

 

Gregg Harris 

NWEA 

 

 

 

 

 

 

 

 

 

 

Paper presented at the annual meeting of the American Educational Research Association  

(AERA). April 12-16, 2012, Vancouver, British Columbia, Canada. 

 

 

Send correspondence to: 

Shudong Wang  

Northwest Evaluation Association (NWEA) 

121 NW Everett St. 

Portland, OR 97206 

Shudong.Wang@NWEA.org 

  

mailto:Shudong.Wang@NWEA.org


 

1 

 

Abstract 

 

The purposes of this study are twofold. First, to investigate the construct or factorial 

structure of a set of Reading and Mathematics computerized adaptive tests (CAT), Measures of 

Academic Progress (MAP), given in different states at different grades and academic terms. The 

second purpose is to investigate the invariance of test factorial structure across different grades, 

academic terms and states.  Because of the uniqueness of CAT data (different student receive 

different items), traditional factor analysis based on fixed form data is no longer practically 

possible at the item level. This study illustrates how to overcome the difficulty of applying factor 

analysis in CAT data and study results provide evidences for valid interpretation MAP tests 

scores across grades at different academic terms for different states.  

  

http://en.wikipedia.org/wiki/Uniqueness_quantification
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Construct Validity and Measurement Invariance of Computerized Adaptive Testing:  

Application to Measures of Academic Progress (MAP) Using Confirmatory Factor Analysis  

 

 

Objectives 

The purposes of this study are twofold: first, to investigate the construct or factorial 

structure of CAT MAP Reading and Mathematics tests at different grades, academic terms, and 

states; second, to investigate the invariance of test factorial structure across different grades, 

academic terms and states.  

 

Perspectives 

Recently, computerized adaptive testing (CAT) has been seen as a particularly effective 

method of measuring an individual student’s status and growth over time in K-12 assessment 

(Way, Twing, Camara, Sweeney, Lazer, & Mazzeo, 2010).  The major reason is that the CAT 

has advantages, such as a short test, immediate feedback on student scores, better reliability, and 

accuracy (Lord, 1977; Kingsbury & Weiss, 1983; Steinberg, & Thissen, 1990) over traditional 

paper-pencil tests.  Its unique advantages in K-12 assessment include cost savings, multiple 

testing opportunities for formative and interim assessments, and better validity (Way, 2006).  

Right now, Oregon, Delaware, and Idaho use CAT in their state assessments, and several 

other states (Georgia, Hawaii, Maryland, North Carolina, South Dakota, Utah, and Virginia) are 

in various stages of CAT development.  As a matter of fact, one of the two consortia created as 

part of the Race to the Top initiative, the SMARTER Balanced Assessment Consortium (SBAC) 

consisting of over half of the states, is committed to a computerized adaptive model because it 

represents a unique opportunity to create a large-scale assessment system that provides 

maximally accurate achievement results for each student (Race to the Top Assessment Program, 

2010).  

Because high stakes decisions about students are based on state test results, these tests 

should be evaluated using professional testing principles, such as validity and reliability.  

Validity (and fairness), according to the Standards for Educational and Psychological Testing 

(AERA, APA, NCME, 1999), is the most important consideration in test development and 

evaluation. 

The MAP Reading and Mathematics tests, like most CATs, use a unidimensional item 

response model (IRT) model based on the premise that correlations among responses to test 

questions can be explained by a single underlying trait.  Traits like reading and math are 
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obviously complex, representing many component skills and facts combined in specific ways.  

The claim of unidimensionality is that these components work together to manifest a coherent 

whole.  Although tests are often structured around goal areas, this is done to provide adequate 

domain sampling rather than to measure different traits. While individuals may have strengths 

and weaknesses in goal areas on a unidimensional test, any systematic relationship among goals 

should be explained by the effect of the unitary latent trait on item responses.  

Detecting dimensionality in adaptive assessments is tricky. Because of the uniqueness of 

CAT tests (different persons respond to different items), conducting factor analysis is more 

challenging for CAT data than for linear or fixed form data. 

First of all, there are no common test forms, so data are very sparse.  Observable 

(manifest) item variables differ across persons for both the overall test event and at the cluster 

(goal or subtest) level.  So, although goal score variables are the same, the context differs; i.e. 

subtest scores are derived from different sets of items.  One possible solution is to conduct 

confirmatory factor analysis (CFA) on the entire item bank, but the large amount of missing data 

(typically, the missing rate is above 90% if the ratio of test length to item bank size is 20) makes 

this unwieldy. For MAP Reading and Mathematics tests, typical missing rates are around 98% 

because the ratio of test length to item bank counts is around 50.  The common imputation 

methods (Rubin, 1987) may statistically help the missing issue, but are difficult to execute.  

The second issue is that the adaptive algorithm operates on the assumption of local 

independence (LI), thus restricting covariance among items. Items are selected to maximize 

information at the estimated latent trait level so that for dichotomous items the probability of a 

correct answer is about .5, responses are randomly distributed, and item covariance is low. Since 

the goal of factor analysis is to summarize patterns of correlation among observed variables, this 

restriction may lead to singularly uninformative factor analysis results for CATs.  McCall and 

Hauser (2006) used Yen’s (1984) Q statistic to get around the sparse data problem. The Q 

statistic operates on pairwise relationships between items and looks for covariance unexplained 

by the observed score. Because item selection is conditioned on the momentary achievement 

estimate, the range of ability is restricted, thus limiting variance and covariance. Values of the Q 

statistic were so small compared to those for fixed form tests that they were difficult to interpret.  

One way to get around the sparse data problem is to conduct CFA at the item cluster level 

(goal or sub-content level).  Since items in each CAT test event are balanced among goal areas 

based on content specifications, a reasonable option may be to assume that items within each 

goal area are content homogeneous across persons and that goal scores may be used as 
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observable variables.  This is the method used here. If multiple traits based on goal areas explain 

item responses, this might show up as differential factor loading of the goal scores on the overall 

score. Furthermore, patterns of factor loading might differ with the different goal structures used 

in different states or among grades within the same state.  For illustration purpose only, Figure 1 

shows the factor model under the IRT assumption of LI. This is the model that is difficult to test 

with computerized adaptive test data. Figure 2 shows a factor model that uses testlet, goal score, 

or item clusters as observable variables.  At the testlet level, this model still satisfies the LI 

assumption, but the LI assumption might or might not hold at the individual item level.   

 

Methods 

Data source or Participants 

 All data used in this study were collected from MAP Reading and Mathematics tests 

administered from Spring 2009 to Spring 2011 twice during the academic year. The MAP tests 

were used with grade 3 to grade 9 across 50 states. The data for this study focuses on 10 states 

(Colorado, Illinois, Indiana, Kansas, Kentucky, Michigan, Minnesota, South Carolina, 

Washington, and Wisconsin) that have the largest MAP sample sizes among the 50 states.  

Reading and Mathematics sample sizes for each state are presented in Table 1. Samples were 

collected for five academic terms: Spring 2009, Fall 2009, Spring 2010, Fall 2010, and Spring 

2011. For each academic term, the samples contained results from five grades, with the grade 

range depending on the academic term.  Table 2 and 3 (due to the limited space, can’t list 10 

state tables) list the frequency and percentages of samples across grades and terms for the  

Illinois Mathematics test and South Carolina Reading test.  For each state, samples were 

randomly drawn from state records.  Approximately 20% students for each state were selected 

under the constraints that student has to have scores for five academic terms and is in the grade 

range of 3 to 9 in the first term. 

     

Instruments 

The MAP tests of Reading and Mathematics for grades 3 to 9 were used in this study. 

MAP tests are computerized adaptive assessments that have been published by Northwest 

Evaluation Association (NWEA) since 2000.  The purpose of MAP tests is to provide educators 

with information to inform teaching and learning in Reading, Mathematics, and Science (NWEA, 

2011). For each state, the MAP tests are aligned to specific state content standards by assembling 

pools of items that address state content standards. Test algorithms survey the pools within goal 

http://www.google.com/search?hl=en&biw=1896&bih=1021&sa=X&ei=B24DTpXMPIrSiALfxLD9DQ&ved=0CBgQBSgA&q=samples+are+randomly+drawn+from&spell=1
http://www.google.com/search?hl=en&biw=1896&bih=1021&sa=X&ei=B24DTpXMPIrSiALfxLD9DQ&ved=0CBgQBSgA&q=samples+are+randomly+drawn+from&spell=1
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or strand areas to assure domain coverage. The marginal reliabilities of tests across 50 states and 

grades are consistently in the low to mid 0.90’s (NWEA, 2011). Because items selected during 

the CAT test for each student are based on the student’s provisional ability, these items have a 

limited range of difficulty for a given test taker. However, all items administered to each student 

have to satisfy the content requirements of the test to insure content validity and domain 

coverage.  Table 4 lists test length (fixed length CAT) and numbers of goals (subtests) of both 

Reading and Mathematics tests. The examples of content specifications for Colorado Reading 

and Indiana Mathematics are shown in Table 5.  

 

Data Analysis    

Using Proc TCALIS in SAS


 9.2 (SAS Institute Inc., 2008), both confirmatory factor 

analysis (CFA) and multi-group confirmatory factor analysis (MGCFA) were conducted to 

determine the adequacy of fit of the factor structures of MAP tests and invariance of factor 

models across grades and academic terms (invariance across terms were not statistically tested).  

All estimation in this study use the maximum likelihood method.  

All MAP tests assume there is only one latent factor (student achievement) that accounts 

for covariance among observed variables at item or item cluster levels. All MAP tests were 

scaled based on unidimensional Rasch model (Rasch, 1980) and RIT (Rasch unIT) scale that is 

linearly transformed from logit (RIT = logit x 10 + 200, NWEA, 2011).  Figure 3 present CFA 

and MGCFA models of MAP tests and the detailed information of the represented models can be 

found in papers of McArdle (1988) and McDonald (1985).  

The one-factor model with goal scores (or subtests) as observed variables and CFA was 

used to evaluate the adequacy of model to fully account for the relationships among subtests. 

Once adequacy of model fit was determined, MGCFA was used to test whether the same model 

holds across different groups. According to Steenkamp and Baumgarther (1998), the invariance 

of factor loadings is sufficient for construct comparability across groups. In this study, the 

additional condition of invariance of factor variance was also tested.  Three levels of invariance 

across 5 grades at each of the academic calendars tested are no constraint (NC), equal factor 

loading (L), and equal factor loadings and factor variances (LV, see Appendix A).  

Several well-known goodness-of-fit indexes (GOF) were used to evaluate model fit: (1) 

absolute indexes that include chi-square  χ
2 , unadjusted goodness-of-fit indexes (GFI), and 

standardized root mean square residual (SRMR); (2) incremental indexes that include the 
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comparative fit index (CFI) and Bentler-Bonett normal fit index (NFI); (3) parsimony index, the 

root mean square error of approximation (RMSEA).  For group comparisons with increased 

constraints, the χ2 value provides the basis of comparison with the previously fitted model, 

although χ2 is not considered as the best practice because it is sample size dependent.  A non-

significant difference in χ2 values between nested models reveals that all equality constraints hold 

across the groups.  Therefore, the measurement model remains invariant across groups as the 

constraints are increased.  A significant χ2 does not necessarily indicate a departure from 

invariance when the sample size is large.  Hu and Bentler (1999) recommended using 

combinations of GOF indices to obtain a robust evaluation of data-model fit in structural 

equation modeling.  The cutoff criterion values of good model fit they recommended are CFI, 

GFI, NFI > 0.95, RMSEA < 0.06, and SRMR < 0.08. It is worth to note that many researchers 

(March 2007a, Marsh, Hau, & Grayson, 2005) showed that GOF criteria from Hu and Bentler 

(1999) are too restrictive. 

 

Results 

1. Results of CFA  

Tables 6 and 7 present the summaries of GOF indexes for independent models of 

Washington MAP Reading and South Carolina MAP Mathematics tests for by grade and term 

(because of limited space, only partial results are listed for two of 10 states). Although not shown 

in the table, all factor loadings of models across content, grades, and states are statistically 

significant.  There are mixed results on the statistically significant χ2 tests (Washington Reading 

tests are not significant and South Carolina Mathematics are significant) and very similar 

patterns of χ2  tests results hold for the rest of the states tests.  However, given the large sample 

sizes across states, it is not surprising to have statistically significant χ2  tests results for some 

states.  All values of fit indexes (except RMSEAs for Michigan MAP Mathematics tests) satisfy 

the Hu and Bentler (1999) criteria and show that each model fits data extremely well for different 

content areas, grades, terms, and states.  Overall results suggest that the one-factor 

(unidimensional) model is the most reasonable model for MAP tests in these 10 states. 

2. Results of MGCFA 

 Tables 8 and 9 display the summaries of GOF indexes of the nested models that tested for 

measurement invariance across grades for Kansas MAP Reading and Michigan Mathematics 

Tests.  In the nested model comparison, the effect of constraints (NC, L, and LV) imposed on 
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less restricted modes can be evaluated by using the difference between 
2
 (called 

2
) because it 

is distributed as 
2
 with the degree of freedom equal to the difference in degrees of freedom 

between the two models. The null hypothesis of no significant difference in fit is tested by 

evaluating whether the chi-square difference is significant. If the difference is significant, then 

the null hypothesis is rejected (Loehlin, 2004).  However, the 
2
 test may be misleading because 

(1) the more complex the model, the more likely a good fit, (2) the larger the sample size, the 

more likely the rejection of the model and the more likely a Type II error, and (3) the chi-square 

fit index is also very sensitive to violations of the assumption of multivariate normality.  To 

address these limitations, the difference of other GOF (CFI, GFI, NFI, RMSEA, and SRMR) as 

adjuncts to the 
2
 statistic can also be used to assess model fit. For the Kansas MAP Reading 

Tests (see Table 8), 
2
 increases (

2
) are significant for testing L invariance at different terms, 

but not significant for testing LV invariance. The rest of states results show a similar pattern.  

For Michigan Mathematics Tests, all 
2
 increases are significant for both L and LV invariance.  

All fit indexes for both Reading and Mathematics tests for different grades and academic years 

from 10 states  satisfied Hu and Bentler’s criteria, except RMSEAs and SRMRs for Michigan 

Mathematics Tests.  In summary, the results provide clear support for the metric invariance for 

all tests except for Michigan Mathematics Tests, and at least, there are configure invariances for 

all tests. 

These results suggest that constructs of MAP tests are well defined, proved to be unidimensional 

equivalent across grades, and have the same patterns across academic years. 

 

Scientific Significance of the Study 

The factor structure of test for a particular grade is directly related to the construct 

validity interpretation of the test, and validity is one of the most important considerations when 

evaluating a test. The factor invariance across grades is a fundamental requirement for use in 

vertical scaling and interpretation of student growth based on the test scores.  There are many 

challenges to providing validity evidence for CAT tests because of its uniqueness compared to 

fixed form tests.  This study using real data provides empirical evidence of construct and 

invariance construct of MAP scales across grades at different academic calendars for 10 different 

states.  Results show the consistency and reasonableness of interpretation of the MAP RIT scale 

across grades and academic calendar years for the different states.   
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Table 1.  Sample Sizes for MAP Reading and Mathematics Tests across States 

State Name Reading Mathematics 

Colorado 256310 259600 

Illinois 444485 433595 

Indiana 262740 247905 

Kansas 217730 211070 

Kentucky 149785 148725 

Michigan 150945 151645 

Minnesota 457630 448470 

South Carolina 473135 465525 

Washington 316980 316925 

Wisconsin 351740 351690 

 

Table 2.  Frequency and Percentages* of Samples across Grades and Academic Calendars for Illinois MAP      

                Mathematics Test  

 

Grade Spring 2009 Fall 2009 Spring 2010 Fall 2010 Spring 2011 Total 

3 20000 

(4.61) 

    20000 

(4.61) 

4 20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

  60000 

(13.84) 

5 20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

100000 

(23.06) 

6 20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

100000 

(23.06) 

7 6719 

(1.55) 

20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

20000 

(4.61) 

86719 

(20.00) 

8  6719 

(1.55) 

6719 

(1.55) 

20000 

(4.61) 

20000 

(4.61) 

53438 

(12.32 

9    6719 

(1.55) 

6719 

(1.55) 

13438 

(3.10) 

Total 86719 

(20.00 

86719 

(20.00) 

86719 

(20.00) 

86719 

(20.00) 

86719 

(20.00) 

433595 

(100.00) 

*: Percentage in parentheses 

Table 3.  Frequency and Percentages* of Samples across Grades and Academic Calendars for South Carolina  

                MAP Reading Test  

 

Grade Spring 2009 Fall 2009 Spring 2010 Fall 2010 Spring 2011 Total 

3 20000 

(4.23) 

    20000 

(4.23) 

4 20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

  60000 

(12.68) 

5 20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

100000 

(21.14) 

6 20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

100000 

(21.14) 

7 14627 

(3.09) 

20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

20000 

(4.23) 

94627 

(20.00) 

8  14627 

(3.09) 

14627 

(3.09) 

20000 

(4.23) 

20000 

(4.23) 

69254 

(14.64) 

9    14627 

(3.09) 

14627 

(3.09) 

29254 

(6.18) 

Total 94627 

(20.00 

94627 

(20.00) 

94627 

(20.00) 

94627 

(20.00) 

94627 

(20.00) 

473135 

(100.00) 

*: Percentage in parentheses 
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Table 4.  Test Length and Numbers of Goals (subtests) of Reading and Mathematics Tests for Grades 3 to 9  

                across States 

 

State Name 
Reading Mathematics 

Test Length Number of Goal Test Length Number of Goal 

Colorado 40 4 50 6 

Illinois 40 4 50 5 

Indiana 40 5 50 7 

Kansas 40 5 50 4 

Kentucky 40 5 50 5 

Michigan 40 4 50 6 

Minnesota 40 4 50 4 

South Carolina 40 3 50 5 

Washington 40 5 50 4 

Wisconsin 40 4 50 5 

 

Table 5. Content Specifications of Colorado Reading and Indiana Mathematics for Grades 3 to 9 

 

Colorado Reading Indiana  Mathematics 

Goal % items per goal Goal % items per goal 

Reading Strategies, Comprehending          

Literary Texts 
25% Number Sense 

14% 

Comprehending Informative and 

Persuasive Texts 
25% Computation 

14% 

Word Relationships and Meanings 25% Algebra and Functions 14% 

Total operational items 25% Geometry 14% 

  Measurement 14% 

  
Statistics, Data Analysis, and 

Probability 14% 

  Problem Solving 14% 
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Table 6.  Summary of Goodness-of- Fit Indexes of Models of Washington MAP Reading Tests for Each Grade  

 at Each Academic Calendar  
 

Academic Calendar Grade N 2 df CFI GFI NFI RMSEA SRMR 

Spring 2009 3 12795 24.94 5 1.00 1.00 1.00 0.02 0.00 

 4 13296 7.19 5 1.00 1.00 1.00 0.01 0.00 

 5 12957 9.11 5 1.00 1.00 1.00 0.01 0.00 

 6 14285 7.98 5 1.00 1.00 1.00 0.01 0.00 

 7 10065     3.33 5 1.00 1.00 1.00 0.00 0.00 

          

Fall 2009 4 12795    10.07 5 1.00 1.00 1.00 0.01 0.00 

 5 13296    15.13 5 1.00 1.00 1.00 0.01 0.00 

 6 12957    12.55 5 1.00 1.00 1.00 0.01 0.00 

 7 14285    15.06 5 1.00 1.00 1.00 0.01 0.00 

 8 10065     6.52 5 1.00 1.00 1.00 0.00 0.00 

          

Spring 2010 4 12795    17.56 5 1.00 1.00 1.00 0.01 0.00 

 5 13296    19.52 5 1.00 1.00 1.00 0.01 0.00 

 6 12957    10.78 5 1.00 1.00 1.00 0.00 0.00 

 7 14285     5.72 5 1.00 1.00 1.00 0.00 0.00 

 8 10065     7.29 5 1.00 1.00 1.00 0.00 0.00 

          

Fall 2010 5 12795    15.39 5 1.00 1.00 1.00 0.01 0.00 

 6 13296     5.28 5 1.00 1.00 1.00 0.00 0.00 

 7 12957    11.66 5 1.00 1.00 1.00 0.01 0.00 

 8 14285    18.77 5 1.00 1.00 1.00 0.01 0.00 

 9 10065     6.06 5 1.00 1.00 1.00 0.00 0.00 

          

Spring 2011 5 12795     4.4 5 1.00 1.00 1.00 0.00 0.00 

 6 13296    10.63 5 1.00 1.00 1.00 0.01 0.00 

 7 12957    15.08 5 1.00 1.00 1.00 0.01 0.00 

 8 14285    13.90 5 1.00 1.00 1.00 0.01 0.00 

 9 10065 4.52 5 1.00 1.00 1.00 0.00 0.00 
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Table 7.  Summary of Goodness-of- Fit Indexes of Models of South Carolina MAP Mathematics Tests for  

  Each Grade at Each Academic Calendar  
 

Academic Calendar Grade N    2 df CFI GFI NFI RMSEA SRMR 

Spring 2009 3 20000 58.25 5 1.00 0.99 1.00 0.02 0.01 

 4 20000 109.70 5 0.99 1.00 1.00 0.03 0.00 

 5 20000 152.66 5 1.00 1.00 0.99 0.04 0.00 

 6 20000 88.94 5 1.00 0.99 1.00 0.03 0.01 

 7 13205 65.05 5 0.99 1.00 1.00 0.03 0.00 

          

Fall 2009 4 20000    70.17 5 0.99 1.00 1.00 0.03 0.00 

 5 20000   113.07 5 1.00 0.99 1.00 0.03 0.01 

 6 20000    58.18 5 1.00 1.00 0.99 0.02 0.00 

 7 20000    88.11 5 1.00 1.00 1.00 0.03 0.00 

 8 13205    74.75 5 1.00 1.00 0.99 0.02 0.00 

          

Spring 2010 4 20000   149.51 5 1.00 0.99 1.00 0.04 0.01 

 5 20000   180.02 5 1.00 0.99 1.00 0.03 0.01 

 6 20000   145.66 5 1.00 1.00 0.99 0.04 0.00 

 7 20000   128.38 5 1.00 1.00 1.00 0.04 0.00 

 8 13205    78.99 5 1.00 1.00 0.99 0.03 0.00 

          

Fall 2010 5 20000   151.35 5 1.00 0.99 1.00 0.04 0.01 

 6 20000    37.83 5 1.00 1.00 1.00 0.02 0.00 

 7 20000    70.91 5 1.00 1.00 0.99 0.03 0.00 

 8 20000   102.66 5 1.00 0.99 1.00 0.03 0.00 

 9 13205    66.81 5 1.00 1.00 1.00 0.03 0.00 

          

Spring 2011 5 20000 140.04 5 1.00 0.99 1.00 0.04 0.01 

 6 20000 89.24 5 1.00 1.00 1.00 0.03 0.00 

 7 20000 158.49 5 1.00 1.00 1.00 0.04 0.00 

 8 20000 201.38 5 1.00 1.00 1.00 0.04 0.01 

 9 13205 75.93 5 0.99 1.00 1.00 0.03 0.00 

 

Table 8.   Results of Comparisons of Model Invariance of Kansas MAP Reading Tests across Five Grades
*
  

 

Academic Calendar 
Grade/ 

Group 
Model 2 df 2 CFI GFI NFI RMSEA SRMR 

Spring 2009 G3 to G7 1. NC 67.00 25  1.00 1.00 1.00 0.01 0.00 

  2. L 528.76 41 461.76 1.00 1.00 0.99 0.02 0.02 

  3. LV 619.04 45 90.28 1.00 0.99 1.00 0.02 0.04 

           

Fall 2009 G4 to G8 1. NC    29.88 25  1.00 1.00 1.00 0.00 0.00 

  2. L   225.73 41 195.84 1.00 1.00 1.00 0.02 0.03 

  3. LV   258.16 45 32.44 1.00 0.99 1.00 0.03 0.04 

           

Spring 2010 G4 to G8 1. NC    61.99 25  1.00 1.00 1.00 0.01 0.00 

  2. L   509.85 41 447.86 1.00 0.99 1.00 0.04 0.03 

  3. LV   566.77 45 56.92 0.99 0.99 0.99 0.04 0.05 

           

Fall 2010 G5 to G6 1. NC    27.54 25  1.00 1.00 1.00 0.00 0.00 

  2. L   333.64 41 306.10 1.00 0.99 1.00 0.03 0.03 

  3. LV   379.73 45 46.09 1.00 1.00 1.00 0.03 0.04 

           

Spring 2011 G5 to G6 1. NC    65.99 25  1.00 1.00 1.00 0.01 0.00 

  2. L   353.53 41 287.54 1.00 0.99 1.00 0.03 0.03 

  3. LV 487.08 45 133.54 1.00 1.00 1.00 0.03 0.06 

 

*  The levels of model constraints restricted to be equal across grades are:   

 1. NC: No Constraint (Model structure). 

 2. L:    Factor loading .   

 3. LV: Factor loading + Factor Variance.  



 

12 

 

 

Table 9.   Results of Comparisons of Model Invariance
1
 of Michigan MAP Mathematics Tests across Five  

                 Grades
*
  

 

Academic Calendar 
Grade/ 

Group 
Model 2 df 2 CFI GFI NFI RMSEA SRMR 

Spring 2009 G3 to G7 1. NC  1844.03 45  0.98 0.98 0.98 0.08 0.02 

  2. L  3410.33 65 1566.30 0.97 0.97 0.96 0.09 0.07 

  3. LV 3726.05 69 315.72 0.96 0.96 0.96 0.09 0.12 

           

Fall 2009 G4 to G8 1. NC  1995.99 65  0.98 0.98 0.98 0.08 0.02 

  2. L  4008.02 69 2012.02 0.97 0.96 0.97 0.10 0.08 

  3. LV  4328.11 45 320.10 0.97 0.96 0.97 0.10 0.13 

           

Spring 2010 G4 to G8 1. NC 2628.19 45  0.98 0.97 0.98 0.09 0.02 

  2. L 4699.64 65 2071.45 0.97 0.95 0.97 0.11 0.08 

  3. LV 152033.96 69 147334.32 0.97 0.95 0.97 0.11 0.14 

           

Fall 2010 G5 to G6 1. NC 3212.61 45  0.98 0.97 0.98 0.10 0.02 

  2. L 3843.60 65 630.99 0.97 0.96 0.97 0.10 0.04 

  3. LV 4298.94 69 455.34 0.97 0.95 0.97 0.10 0.14 

           

Spring 2011 G5 to G6 1. NC 2705.84 45  0.98 0.97 0.98 0.10 0.02 

  2. L 4254.03 65 1548.19 0.97 0.96 0.97 0.10 0.06 

  3. LV 4326.35 69 72.32 0.97 0.96 0.97 0.10 0.08 

 

*  The levels of model constraints restricted to be equal across grades are:   

 1. NC: No Constraint (Model structure only). 

 2. L:    Factor loading .   

 3. LV: Factor loading + Factor Variance.  
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Figure 1. Individual item as observables 

 

Figure 2. Testlets as observable variables  
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Figure 3.  Models of MAP Tests across Groups (group indicators omitted for simplicity) 

                                                             

Appendix A. 

 

1.  CFA Measurement Model 

                                                        Y =  +  +                                                          (A.1) 

where Y is the vector of manifest indicator (goal scores in this study),   is a vector of 

measurement intercepts,  is the matrix of factor loading, and  is a vector of residuals.  The 

model-implied covariance matrix is 

 

                                                         =  +          (A.2) 

where  is the latent variable (achievement in this study) covariance matrix and  is the residual 

covariance matrix.  Because we expect the mean achievement will be different across the grades, 

mean structure is not our concern in this study. In this study, all measurement intercepts were set 

to zero. 

2.  CFA Measurement Model in the Multiple Group 

                                                             
 

                                              (A.3) 

Where g is group indicator and g = 1,2,...5 in this study.    is the vector of manifest indicator 

(goal scores in this study),    is a vector of measurement intercepts, 
 
 is the matrix of factor 

loading, and   is a vector of residuals.  The model-implied covariance matrix is  

                                                         
 
 

   
 
                          (A.4) 

where  
 is the latent variable (achievement in this study) covariance matrix for group g and 

 
 

is the residual covariance matrix for g group.  Because we expect the mean achievement will be 

different across the grades, mean structure is not our concern in this study and all measurement 

intercepts were set at zero. 

According to many researchers (Bryne, Shavelson & Muthén, 1989; Jöreskog ,1971; 

Marsh, Muthén, Asparouhov, Lüdtke, Robitzsch, Morin &Trautwein, 2009), the invariance of 
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the parameter matrices implied by equation (A.4) means, the covariance matrices for G groups 

will only be identical if all of the factor loadings, factor variance and covariances, and residual 

variance are identical across groups. Although there are total 13 partially nested models (named 

differently for different researchers) can be tested (Marsh et al., 2009) for model invariance. In 

this study, three invariance tests conducted are: (1) configure invariance (congeneric invariance) 

without constraint imposed on parameters; (2) weak factor invariance (tau-equivalent or metric 

invariance) with constraint of equal factor loading; and (3) invariance of factor loading and 

factor variance.  The invariance tested in this study is summarized as following: 

 

1. No constraint, baseline model (NC) 

2. Equal factor loadings (L) 

 

 H0:  
  

  
  

  
 

 

 

          3. Equal factor loadings and factor variance (LV) 

 

H0:  
  

  
  

  
 
 

H0:  
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Validation of Longitudinal Achievement Constructs of Vertically Scaled Computerized Adaptive Tests: 

A Multiple Indicator Latent Growth Modeling Approach 

 

 

 

ABSTRACT 

 

It is assumed that an underlying longitudinal achievement construct exists across grades in K-12 

achievement tests.  This assumption provides a necessary assurance for measurement and interpretation 

of student growth over time. However, evidence is needed to determine whether the achievement 

construct remains consistent or shifts over grades or time.  The current study is an investigation using a 

multiple-indicator latent growth modeling (MLGM) approach to examine the longitudinal achievement 

construct and its invariance for the Measures of Academic Progress® (MAP®) a computerized adaptive 

tests in reading and mathematics.  The results of the analyses from ten states suggest that with repeated 

measures, the construct of both MAP reading and mathematics are remained consistent at different time 

points.  The findings support the invariance of the achievement construct from different grades or time 

points and provide empirical validity evidence for measuring student growth. 
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INTRODUCTION 

 

For decades, achievement tests delivered either in linear or Computerized Adaptive Test (CAT) 

algorithms have been constructed to provide formative or summative measures about student 

achievement status at grade level (for example, Amy’s third grade mathematics test score in Fall 2005), 

about students’ academic growth over time from longitudinal data (for example, Amy’s third grade 

mathematics test score in Fall 2005 and her seventh grade mathematics score in Fall 2009), or about 

student achievement across grades from cross-sectional data (for example, Amy’s third grade, Johnny’s 

fourth grade, and Tim’s fifth grade mathematics scores in Fall 2005) (Hamilton, Stecher & Yuan, 2008; 

Patz, 2007; Smith and Yen, 2006; Yen, 2007, 2009). In the recent educational reforms, assessing an 

individual student’s growth has been required for high-stakes decisions by state and federal education 

policy, such as the Race to the Top initiatives (RTTT) (U.S. Department of Education, 2009). These 

requirements have put tremendous pressures on states and testing companies to develop high-quality and 

high-utility assessment systems.  As RTTT states:  “(student) growth may be measured by a variety of 

approaches, but any approach used must be statistically rigorous and based on student achievement data, 

and may also include other measures of student learning in order to increase the construct validity and 

generalizability of the information” (U.S. Department of Education, pp. 37812, 2009). Computerized 

Adaptive Tests (CAT) are considered  more effective than linear tests for measuring individual students’ 

growth over time (Way, Twing, Camara, Sweeney, Lazer, & Mazzeo, 2010). Advantages of CATs over 

linear tests include shorter tests, immediate reporting of student scores, higher reliability and 

measurement accuracy (Kingsbury & Weiss, 1983; Lord, 1977; Thissen, & Mislevy, 1990), cost savings, 

and multiple testing opportunities for formative and interim assessments (Way, 2006).  

Measuring individual student growth has two fundamental requirements (Bergman, Eklund, & 

Magnusson, 1991; Betebenner & Linn, 2010; Dorans & Cohen, 2005; Linn, 1993; Mislevy, 1992; 
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Williamson, Appelbaum, & Epanchin, 1991). First, there are multiple measures of achievement 

construct along the growth trajectory. Second, the achievement construct should be invariant from 

different grade levels or points in time.  This means, in order to measure student growth, achievement 

tests must satisfy two necessary conditions.  First, there is a continuous construct that the tests are 

designed to measure over grades or time, i.e., the tests are scored on a longitudinal construct. Second, 

the construct measured by multiple tests must be invariant, or constant, across grade levels and time, i.e., 

the construct does not shift over grade levels or time (Wang & Jiao, 2009).   

Whether achievement tests satisfy these two assumptions has been investigated by many 

researchers from the perspectives of content and vertical scaling (Cizek, 2005; Linn, 2001; Lissitz, 2006; 

Martineau, Paek, Keene, & Hirsch, 2007; Wang & Jiao, 2009; Wise, 2004). The study by Wang and Jiao 

(2009) provided empirical evidence to support construct invariance across grades for a vertically scaled 

norm-referenced test.  However, few studies were found that examine the longitudinal achievement 

construct and construct invariance across grade levels and points in time with CAT.  

The invariance of achievement construct is an important validity issue. According to the 

Standards for Educational and Psychological Testing (American Educational Research Association 

[AERA], American Psychological Association [APA], & National Council on Measurement in 

Education [NCME], 1999), validity is the most important consideration in test development and 

evaluation.  Validity refers to the degree to which empirical evidence and theoretical rationale support 

the inferences and actions based on test scores (Messick, 1989) or the degree to which evidence and 

theory support the interpretations of test scores for the proposed use of tests (AERA, at al., 1999).  

Interpretations of test results that measure achievement ability or traits are subject to many validity 

threats. Construct-Under Representation (CUR) and Construct-Irrelevant Variance (CIV) (Messick, 

1984) are the major threats to achievement tests.  The construct of a test is a theoretical representation of 
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the underlying traits, concepts, attributes, processes, or structures the test is designed to measure and 

directly relates to test validity (Cronbach, 1971; Messick, 1989).  Five sources of validity evidence 

specified in the Standards include (a) test content, (b) response process, (c) internal structure, (d) 

relations to other variables, and (e) consequences of testing.  CUR and CIV could be identified in the 

process of test development, administration, and use of test results.  This study focuses on validity 

evidence of internal structure and the invariance of the internal structure of achievement tests across 

grades or/and over time.  

The factorial validity can be a valuable component of validity evidence (Guilford, 1946; Messick, 

1995). Although evidence of internal structure of a test is routinely reported in many test technical 

reports or manuals from state assessment programs and test companies, construct invariance is rarely 

addressed from a longitudinal perspective when test results are routinely used to determine student 

growth. Many test publishers have used the First-Order Latent Growth Curve Model (FLGM) (Bollen & 

Curran, 2006; McArdle, Grimm, Hamagami, Bowles, & Meredith, 2009; Muthén, 1995) in longitudinal 

studies of student growth based on the assumption that there is a continuous test construct.  

Unfortunately, little attention has been drawn to examine the assumption in practice. The second-order 

latent growth model or the Multiple-Indicator Latent Growth Model (MLGM) is rarely used to evaluate 

the longitudinal construct validity for adaptive test achievement based on CAT.  There are two 

advantages of MLGM over FLGM (Bollen & Curran, 2006; Ferrer, Balluerka, & Widaman, 2008; 

Muthén & Muthén, 2007; Sayer & Cumsille, 2001). First, MLGM can test, instead of making 

assumptions, whether the same latent construct is measured at each point in time or grade level.  Second, 

it accounts for important information of the psychometric properties of the indicators.  MLGM can be 

used to evaluate factorial invariance across points in time and determine whether the same latent 
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construct is measured across time or grade levels so as to assure that changes of test scores quantify 

achievement growth rather than the shift of the achievement test construct. 

FLGM uses total scores as an observable variable or indictor in the longitudinal achievement 

growth analysis, while MLGM uses observed indicators that could be either at the item level or the 

cluster of items level (testlet, subtest, goal score, etc.).  The choice of the level of an indicator in MLGM 

or in general factor analysis has a significant effect on evaluating the construct because item cluster 

involves averaging item scores and using summed scores as observed variables in analyses (Bandalos, 

2002; Bandalos & Finney, 2001; Hall, Snell & Foust, 1999; Little, Cunningham, Shahar & Widaman, 

2002; Nasser & Wisenbaker, 2003).  Some reasons to use clusters of items are to reduce the problems of 

non-normality, to have fewer free parameters to be estimated compared to the number of observations, 

and to improve data-model fit.  Arguments state that using clusters of items increases the chance of 

combining items that truly measure multiple dimensions and therefore results in severe bias.  Overall, 

clustering items is a commonly used technique based upon theoretical rationale.  

Compared with linear tests, it is almost impossible to use indicators at the item level for adaptive 

tests because each student receives different items that tailor to his or her ability.  Using unique test 

forms in CAT complicates the evaluation of longitudinal achievement construct.  Compared with linear 

tests, there are two major challenges in CAT of using observable variables for MLGM.  First, observable 

variables are different across persons at the item level.  Second, even though the observable variables are 

the same at the cluster level, the context of the observable variables is different, i.e., the same subtest 

score may consist of different items for the same content.  One possible solution to the first problem is to 

conduct confirmatory factor analysis at the item level on the entire item bank.  However, the drawback 

is the large amount of missing response data in the dataset.  For example, the missing rate of the 

Measure of Academic Progress (MAP, NWEA, 2011) is around 98% for the reading and mathematics 
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tests. Besides, the data are very sparse because the ratio of the test length to the size of the item bank is 

about 1/50 (Wang & Harris, 2011). The commonly used imputation method (Rubin, 1987) may 

statistically help solve the problem, but it cannot deal with the missing data issue from the content 

perspective.   

The purpose of this study is to investigate the longitudinal achievement constructs of a 

standardized, large-scale CAT in reading and mathematics across 10 states.  

 

METHOD 

 

Data source and Participants 

All data used in this study were collected from the Measures of Academic Progress (MAP) 

assessment system in spring 2009 through spring 2011. The MAP reading and mathematics tests were 

administered to students in grades 3 through 10 across 50 states in the United States. The data analysis 

only focused on the 10 states (Colorado, Illinois, Indiana, Kansas, Kentucky, Michigan, Minnesota, 

South Carolina, Washington, and Wisconsin) that supplied the largest samples among the 50 states.  For 

each state, the data were collected as part of a five-wave panel design (Spring 2009/Grade5, Fall 

2009/Grade6, Spring 2010/Grade6, Fall 2010/Grade7, and Spring 2011/Grade7). Each state’s sample 

contains approximately 20% of the students randomly drawn from the corresponding population and 

under the constraints that students must have five academic calendar records (five-wave) from grade 5.  

Tables 1 and 2 list the frequency distributions and percentages of reading and mathematics for 

sample states (due to limited space) across five-wave by state, gender, and ethnicity. 

 

Insert Tables 1 and 2 about here 

http://www.google.com/search?hl=en&biw=1896&bih=1021&sa=X&ei=B24DTpXMPIrSiALfxLD9DQ&ved=0CBgQBSgA&q=samples+are+randomly+drawn+from&spell=1
http://www.google.com/search?hl=en&biw=1896&bih=1021&sa=X&ei=B24DTpXMPIrSiALfxLD9DQ&ved=0CBgQBSgA&q=samples+are+randomly+drawn+from&spell=1
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Instruments 

MAP has been published by Northwest Evaluation Association™ (NWEA™) since 1976, and all 

MAP tests are computerized and presented adaptively.  The purpose of MAP is to provide educators 

with information to inform teaching and learning in reading, language usage, mathematics, and science 

(NWEA, 2011).  The MAP tests are aligned to the content standards of each state by assembling a 

customized item pool to measure the specific standards.  Unlike state assessment programs used to 

report proficiency under NCLB, MAP tests allow certain off-grade items to be used for on-grade 

assessment for the purpose of measuring growth. Test algorithms survey the pool within each content 

standard goal or strand level to assure the content domain coverage. The marginal reliabilities of test 

scores are consistently in the range of low to mid 0.90s across grades, tests, and states (NWEA, 2011).  

MAP items are calibrated with the Rasch model (Rasch, 1961) and all MAP tests are vertically scaled 

(NWEA, 2011). 

In the process of item selection, all items administered to each student must satisfy the content 

requirements of each test to insure the content validity of the test.  Table 3 lists test length (fixed length 

CAT) and numbers of goals (subtests) for reading and mathematics for the 10 states.  A sample of 

content specifications for reading in Colorado and mathematics in Indiana is shown in Table 4.  Due to 

the uniqueness of CAT test forms, the observed variables used in this study are goal scores (item clusters) 

under the assumption that the item cluster for each goal area contains homogeneous content across 

students.  All goal scores are scale scores on the same metric across goals and time periods. 

 

Insert Tables 3 and 4 about here 
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Multiple Indicator Latent Growth Model (MLGM) 

MLGM is a multivariate extension of FLGM (Bollen & Curran, 2006; Ferrer, Balluerka, & 

Widaman, 2008; McDonald, 1985; McArdle, 1988; Muthén, 1991; Tisak & Meredith, 1990).  If yjti 

denote the observed variables (goals) for individual i, indicator j, and time point t, and let ηti denote a 

latent variable construct, the level-1 model for measurement part is: 

                                                           yjti = jt + λjt ηti + εjti                                                                                 (1) 

where jt is intercept for the jth indicator in the tth time period, λjt is the factor loading for the jth 

indicator at the tth time point, and εjti is the random error for the ith individual in the tth time point and 

the jth indicator. Level-1 models for a latent variable with both linear and quadratic growth are: 

Linear growth                                    

          ηti = η0i + η1i 1t + ζti                                                               (2) 

Quadratic growth 

                                                           ηti = η0i + η1i 1t + η2i 2t + ζti                                                (3) 

where ζti is the random normal error for the ith individual in the tth time point; η0i, η1i, and η2i are the 

intercept, slope, and quadratic of latent factors, respectively, for individual i; and 1t and 2t represent tth 

time point coefficients that determine the shape of the growth curve. Level 2 models are: 

Linear growth                                    

                                                           η0i = α0 + ζ0i                                                                            (4) 

                                                           η1i = α1 + ζ1i                                                                            (5) 

Quadratic growth 

                                                           η0i = α0 + ζ0i                                                                            (6) 

                                                           η1i = α1 + ζ1i                                                                            (7) 

                                                           η2i = α2 + ζ2i                                                                            (8) 
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where ζ0i , ζ1i , and ζ2i  are normal random errors; α0, α1 , and α2 are latent means of intercept, slope, and 

quadratic terms for individual i, and wi is weight.  All MAP tests have been tested as one latent factor 

(Wang, McCall, Jiao, & Harris, 2011).  Figures 1 and 2 present the MLGM with linear and quadratic 

latent growth. 

Insert Figure 1 and 2 about here 

Measurement Invariance of using MLGM  

The measurement invariance (Drasgow, 1987; Ferrer, Balluerka, & Widaman, 2008; Meredith, 

1993) evaluated in this study is the invariance across time points of testing.  Although values of manifest 

variables are different across time in longitudinal studies, they should be on the same measurement scale 

to derive an equal definition of a latent construct across time.  Widaman and Reise (1997) classified two 

types of factorial invariance as non-metric (configural) and metric. Configural invariance (CI) refers to 

the same indicators of the latent construct.  The metric factorial invariance has three hierarchical levels, 

which are categorized as Weak Invariance (WI), where the factor loading of each indicator is invariant 

over time; Strong Invariance (SI), where the factor loading and intercept of each indicator are invariant 

over time; and Strict Factorial Invariance (SFI), where the factor loading, intercept, and unique variance 

of each indicator are invariant over time.  Sayer and Cumsille (2001) showed that the SFI is unlikely to 

hold because heterogeneous variance across time is often observed. In this study, only CI, WI, and SI 

are analyzed.  The invariance tested is summarized in three conditions: the configural invariance (CI), 

the weak invariance (WI) that can be expressed as Equation 9, and the strong invariance (SI) that can be 

expressed in Equations 10 and 11 

                                                              H0:  λj1 = λj2 = … λjT = λj                                                     (9) 

                                                              H0:  λj1 = λj2 = … λjT = λj                                                     (10) 

                                                              H0:  α j1 = α j2 = … α jT = α j                                                 (11) 
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where λ1 = 1, α0 = 0, and variances of εjti and ζti may vary over time. And for structural differences, the 

mean of ηti and variance of ηti vary over time. 

Several well-known goodness-of-fit (GOF) indexes were used to evaluate the model fit. They are 

(1) absolute indexes that include chi-square  χ
2
  and standardized root mean square residual (SRMR); (2) 

incremental indexes that include the comparative fit index (CFI) and Tucker-Lewis Index (TLI); and (3) 

parsimony index, the root mean square error of approximation (RMSEA). For nested models that 

include a different shape of growth (e.g., linear versus quadratic), both Akaike’s Information Criterion 

(AIC; Akaike, 1987) and Bayesian Information Criterion (BIC) (Schwartz, 1978) are obtained for each 

model tested.  According to Raftery (1995), the values of BIC difference (BIC of quadratic model – BIC 

of linear model) ranging from 0 to 2 are interpreted as weak evidence for quadratic model, values of 2 to 

6 are interpreted as moderate, values of 6 to 10 are interpreted as strong, and values > 10 are interpreted 

as very strong.  For model comparisons with increased constraints, the χ
2
 value also provides the basis of 

comparison with the previously fitted model in addition to AIC and BIC.  χ
2
 is not considered as the best 

one in practice because it is sample-size dependent.  A non-significant difference in χ
2
 values between 

nested models reveals that all equality constraints hold across time.  Therefore, the measurement model 

remains invariant across groups as the constraints are increased.  A significant χ
2
 value does not 

necessarily indicate a departure from invariance when the sample size is large.  Hu and Bentler (1999) 

recommended using combinations of GOF indices to obtain a robust evaluation for model-data fit in 

structural equation modeling.  The cut-off criterion values of a good model-fit that they recommended 

are CFI > 0.95, TLI > 0.95, RMSEA < 0.06, and SRMR < 0.08.  It is worth noting that many researchers 

(Hau, & Grayson, 2005; March 2007a, Marsh, 2007; Sayer & Cumsille, 2001) consider the GOF criteria 

from Hu and Bentler too restrictive.  All analyses are conducted in Mplus 5.1 (Muthén & Muthén, 2006). 
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RESULTS 

Results of MLGM  

Figures 3 and 4 illustrate a sample of observed and estimated individual quadratic growth based 

on MGLM across five-wave academic terms.  Tables 5 and 6 display the summaries of GOF indexes of 

MLGM data fit for linear and quadratic growth in reading and mathematics across states.  All values of 

the fit indexes satisfy the Hu and Bentler (1999) criteria in both content areas and show that each model 

fits the data extremely well across states with one exception in Indiana for mathematics.  

 

Insert Figures 3 and 4 about here 

 

Insert Tables 5 and 6 about here 

 

The overall results suggest that both linear and quadratic MLGMs are reasonably good models 

for MAP tests in 10 states.  For AIC, the lower value (positive or negative) indicates a better fit than the 

higher value.  The results show that the quadratic model fits data better than the linear model in the 

nested modeling comparison.  For BIC, all differences between quadratic and linear models are greater 

than 10 in both reading and mathematics, which indicate that the quadratic model fits the data better than 

the linear model.  The statistically significant χ
2 

difference between the quadratic and linear models 

provides additional evidence to support the conclusion that the quadratic model is a better fit for the data 

than the linear model.  It is also important to note that both the linear and quadratic models show 

longitudinal achievement construct underlying the achievement measures equally well in growth. 
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Results of Invariance of MLGM 

Tables 7 and 8 present the summaries of GOF indexes with nested linear MLGM that was used 

for measurement invariance across five waves in reading and mathematics.  Nearly all fit indexes 

satisfied Hu and Bentler’s criteria in both reading and mathematics tests across states except Indiana. 

Some SRMRs seemed to be slightly above Hu and Bentler’s criteria.  In evaluating measurement 

invariance, the simple model is a restricted model and the complex model is an unrestricted model. The 

effect of constraints imposed on the less restricted model can be evaluated by using the difference of 
2
 

(
2
) for nested model comparisons because the degree of freedom is equal to the difference in the 

degrees of freedom of two models.  Results indicate that all 
2
 increases (

2
) are statistically 

significant for evaluating the differences of invariance between unrestricted and restricted models. As 
2 

becomes
 
statistically significant, a more complex model should be chosen.  However, the limitations of 

the 
2
 test are the sample size dependency (Cheung & Rensvold, 2002), and the difference of other GOF 

indexes (such as CFI) as adjuncts to the 
2
 statistic, which can also be used to assess model fit.  

According to Cheung and Rensvold (2002), if the difference of CFI (CFI) is less than 0.01 between the 

two models, the simple model is not worse than the complex model.  The value of all CFIs less than 

0.01 in both tests indicates that constrained parameters are invariant across time. 

 

Insert Table 7 and 8 about here 

 

In summary, the results of analyses in this study provide clear support to the CI, WI, and SI for 

all tests except the Indiana mathematics test.  These results suggest that longitudinal constructs of MAP 

tests are well defined for measuring student achievement growth. 
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DISCUSSION 

As the factor structure of a test is directly related to the construct validity interpretation of the 

test at a particular point in time, the longitudinal factor structure at different points in time is crucial for 

the longitudinal construct validity interpretation to measuring student growth. The achievement 

construct of a test at a particular time, grade level, or semester calendar is well studied and reported in 

practice for given purposes and related interpretation of test scores.  Although many standardized 

achievement tests in large-scale assessments report test scores on a vertical scale for student growth and 

group achievement trends, few studies reported the longitudinal achievement construct. Many 

researchers are interested in whether the longitudinal achievement construct remains the same over time 

or shifts from time to time from content standard and vertical scaling perspectives. A few studies have 

focused on validation of longitudinal achievement construct using the MLGM approach, especially for 

studies based on CAT longitudinal data. 

The present study tested the hypothesis of factorial invariance of MAP reading and mathematics 

tests over time.  The evidence collected in the study shows that with repeated measures, the construct of 

both reading and mathematics remained consistent at different points in time, which supports the 

internal structure of MAP design for intended purposes.  The evidence also suggest that there are not 

only configural and weak invariance, but also strong invariance of the longitudinal construct in MAP 

reading and mathematics tests across different states (except the Indiana mathematics test), which 

supports valid interpretations of student growth. 

In summary, this study underscores the importance of empirical evidence in the validation of 

longitudinal achievement constructs to support the interpretation of student growth.  In particular, the 

study explored the feasibility of assessing the internal structure of MAP tests using CAT data. The 
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results support consistent and reasonable interpretations of the MAP reading and mathematics tests 

across academic calendar years used by different states.  This study carries the validation process 

beyond a traditional construct validation process in which validation evidence is usually collected at one 

point in time only, but used to support the longitudinal achievement construct for student growth.  It is 

indeed important to investigate the longitudinal achievement construct to ensure that the same construct 

is measured over time for a valid interpretation of student achievement growth.  We strongly 

recommend that achievement test publishers and users continue investigating the longitudinal 

achievement construct and construct invariance over time in the near future to support valid 

interpretations of student academic growth.
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TABLE 1 

 

Samples of MAP Reading Tests for 10 States 

 

  Ethnicity
*
  

State Gender  1 2 3 4 5 6 7 8 Total 

Colorado F N 78 51 119 729 4 1351 57 93 2482 
  % 1.53 1.00 2.34 14.34 0.08 26.58 1.12 1.83 48.84 
 M N 59 50 113 708 6 1536 52 76 2600 
  % 1.16 0.98 2.22 13.93 0.12 30.22 1.02 1.50 51.16 
            
Illinois F N 58 754 698 2299 13 5486 220 342 9870 
  % 0.29 3.77 3.49 11.50 0.07 27.43 1.10 1.71 49.35 
 M N 53 692 725 2320 15 5733 259 333 10130 
  % 0.27 3.46 3.63 11.60 0.08 28.67 1.30 1.67 50.65 
            

Indiana F N 20 77 365 254  4247 162 124 5249 

  % 0.19 0.74 3.50 2.43  40.71 1.55 1.19 50.31 

 M N 9 60 295 249 1 4285 156 129 5184 

  % 0.09 0.58 2.83 2.39 0.01 41.07 1.50 1.24 49.69 

            
Kansas F N 189 130 226 355 8 3236 103 105 4352 

  % 2.13 1.46 2.54 3.99 0.09 36.38 1.16 1.18 48.93 

 M N 204 138 256 404 3 3329 105 103 4542 

  % 2.29 1.55 2.88 4.54 0.03 37.43 1.18 1.16 51.07 

            
Kentucky F N 4 41 362 95 1 2491 26 264 3284 

  % 0.06 0.63 5.55 1.46 0.02 38.21 0.40 4.05 50.37 

 M N 5 21 337 98 6 2446 37 286 3236 

  % 0.08 0.32 5.17 1.50 0.09 37.52 0.57 4.39 49.64 

            
Michigan F N 25 100 642 139 6 2295 9 159 3375 

  % 0.37 1.46 9.40 2.03 0.09 33.59 0.13 2.33 49.39 

 M N 30 80 582 109 7 2454 3 193 3458 

  % 0.44 1.17 8.52 1.60 0.10 35.91 0.04 2.82 50.61 

            
Minnesota F N 203 439 607 551 1 7883 2 262 9948 

  % 1.02 2.20 3.04 2.76 0.01 39.43 0.01 1.31 49.75 

 M N 206 448 616 529 2 8015 6 224 10046 

  % 1.03 2.24 3.08 2.65 0.01 40.09 0.03 1.12 50.25 

            
South  F N 24 118 3542 518 12 5514 226 2 9956 
Carolina  % 0.12 0.59 17.71 2.59 0.06 27.57 1.13 0.01 49.78 

 M N 22 101 3561 545 9 5585 216 5 10044 

  % 0.11 0.51 17.81 2.73 0.05 27.93 1.08 0.03 50.22 

            
Washington F N 156 228 169 1765 32 3558 169 214 6291 

  % 1.20 1.76 1.30 13.62 0.25 27.46 1.30 1.65 48.55 

 M N 153 270 177 1905 51 3739 181 190 6666 

  % 1.18 2.08 1.37 14.70 0.39 28.86 1.40 1.47 51.45 

            
Wisconsin F N 126 240 462 525 3 5755 8 226 7345 

  % 0.84 1.61 3.10 3.52 0.02 38.56 0.05 1.51 49.21 

 M N 99 237 428 527 1 6044 6 239 7581 

  % 0.66 1.59 2.87 3.53 0.01 40.49 0.04 1.60 50.79 

*
1. Native American/Alaskan Native, 2.Asian, 3. African American, 4. Hispanic, 5. Native Hawaiian or Other Pacific Islander, 6. White, 

7. Multi-ethnic, 8. Not Specified or Other. 
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TABLE 2 

 

Samples of MAP Mathematics Tests across Five-wave from 10 States  

 

  Ethnicity
*
  

State Gender  1 2 3 4 5 6 7 8 Total 

Colorado F N 78 52 123 805 4 1396 60 92 2610 
  % 1.44 0.96 2.27 14.86 0.07 25.77 1.11 1.70 48.18 
 M N 64 53 131 830 6 1594 51 78 2807 
  % 1.18 0.98 2.42 15.32 0.11 29.43 0.94 1.44 51.82 
            
Illinois F N 52 739 744 2186 14 5543 230 360 9868 
  % 0.26 3.70 3.72 10.93 0.07 27.72 1.15 1.80 49.34 
 M N 63 680 745 2152 11 5866 260 355 10132 
  % 0.32 3.40 3.73 10.76 0.06 29.33 1.30 1.78 50.66 
            

Indiana F N 22 76 370 222 0.00 4185 163 128 5166 

  % 0.21 0.74 3.61 2.17 0.00 40.84 1.59 1.25 50.41 

 M N 9 61 298 216 1 4214 152 130 5081 

  % 0.09 0.60 2.91 2.11 0.01 41.12 1.48 1.27 49.59 

            
Kansas F N 180 129 238 356 8 3285 102 108 4406 

  % 2.01 1.44 2.65 3.97 0.09 36.64 1.14 1.20 49.14 

 M N 203 137 271 395 4 3337 107 106 4560 

  % 2.26 1.53 3.02 4.41 0.04 37.22 1.19 1.18 50.86 

            
Kentucky F N 4 42 381 101 1 2486 27 278 3320 

  % 0.06 0.64 5.77 1.53 0.02 37.66 0.41 4.21 50.287 

 M N 5 22 340 102 6 2478 36 293 3282 

  % 0.08 0.33 5.15 1.54 0.09 37.53 0.55 4.44 49.712 

            
Michigan F N 22 86 627 172 5 2301 9 136 3358 

  % 0.32 1.26 9.18 2.52 0.07 33.70 0.13 1.99 49.19 

 M N 24 74 563 137 6 2479 3 183 3469 

  % 0.35 1.08 8.25 2.01 0.09 36.31 0.04 2.68 50.81 

            
Minnesota F N 217 432 628 518 1 7897 2 254 9949 

  % 1.09 2.16 3.14 2.59 0.01 39.49 0.01 1.27 49.75 

 M N 225 457 600 523 2 8026 3 215 10051 

  % 1.13 2.29 3.00 2.62 0.01 40.13 0.02 1.08 50.26 

            
South  F N 22 110 3622 521 11 5477 227 2 9992 
Carolina  % 0.11 0.55 18.11 2.605 0.055 27.38

5 

1.135 0.01 49.96 

 M N 24 102 3532 540 6 5591 205 8 10008 

  % 0.12 0.51 17.66 2.7 0.03 27.95 1.025 0.04 50.04 

            
Washington F N 167 264 189 1881 31 3985 172 265 6954 

  % 1.17 1.85 1.32 13.17 0.22 27.91 1.20 1.86 48.70 

 M N 178 276 188 2004 54 4205 186 233 7324 

  % 1.25 1.93 1.32 14.04 0.38 29.45 1.30 1.63 51.30 

            
Wisconsin F N 131 241 481 549 4 5933 19 214 7572 

  % 0.85 1.57 3.13 3.58 0.03 38.64 0.12 1.39 49.31 

 M N 102 236 449 539 4 6212 14 228 7784 

  % 0.66 1.54 2.92 3.51 0.03 40.45 0.09 1.48 50.69 

*
1. Native American/Alaskan Native, 2.Asian, 3. African American, 4. Hispanic, 5. Native Hawaiian or Other Pacific Islander, 6. White, 

7. Multi-ethnic, 8. Not Specified or Other. 
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TABLE 3 

 

Test Length and Numbers of Goals (subtests) of Reading and Mathematics Tests for Grades 5 to 7 across States 

 

State 
Reading Mathematics 

Test Length Number of Goal Test Length Number of Goal 

Colorado 40 4 50 6 

Illinois 40 4 50 5 

Indiana 40 5 50 7 

Kansas 40 5 50 4 

Kentucky 40 5 50 5 

Michigan 40 4 50 6 

Minnesota 40 4 50 4 

South Carolina 40 3 50 5 

Washington 40 5 50 4 

Wisconsin 40 4 50 5 

 

 

TABLE 4 

 

Content Specifications of Colorado Reading and Indiana Mathematics for Grades 5 to 7 across States 

 

Colorado Reading Indiana  Mathematics 

Goal % items per goal Goal % items per goal 

Reading Strategies, Comprehending          

Literary Texts 
25% Number Sense 

14% 

Comprehending Informative and 

Persuasive Texts 
25% Computation 

14% 

Word Relationships and Meanings 25% Algebra and Functions 14% 

Total operational items 25% Geometry 14% 

  Measurement 14% 

  
Statistics, Data Analysis, and 

Probability 14% 

  Problem Solving 14% 
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TABLE 5 

 

Goodness-of- Fit Indexes of MLGM Models of MAP Reading Tests for Different States 
 

 

 

 

 

 

 

 

State Model N 2 df 2 CFI TLI RMSEA SRMR AIC BIC 

Colorado Linear 5082 619.234 170   0.996 0.996 0.023 0.044 741066.826 741458.834 

 Quadratic  537.906 166 81.328 0.997 0.996 0.021 0.043 740993.498 741411.640 

             

Illinois Linear 20000 3039.390 170   0.993 0.992 0.029 0.050 2890494.433 2890968.642 

 Quadratic  2783.299 166 256.091 0.994 0.993 0.028 0.049 2890246.342 2890752.165 

             

Indiana Linear 10433 2056.374 275   0.992 0.991 0.025 0.040 1928420.139 1928964.094 

 Quadratic  1979.157 271 77.217 0.992 0.992 0.025 0.041 1928350.922 1928923.888 

             

Kansas Linear 8894 2110.578 275   0.991 0.990 0.027 0.043 1634280.583 1634812.568 

 Quadratic  2090.995 271 19.583 0.991 0.990 0.027 0.043 1634269.000 1634829.357 

             

Kentucky Linear 6520 1179.054 275   0.994 0.994 0.022 0.029 1206322.986 1206831.683 

 Quadratic  1082.308 271 96.746 0.995 0.994 0.021 0.022 1206234.240 1206770.068 

             

Michigan Linear 6833 1299.092 170   0.992 0.991 0.031 0.052 989251.073 989660.844 

 Quadratic  1106.289 166 192.803 0.993 0.992 0.029 0.050 989066.269 989503.359 

             

Minnesota Linear 19994 3713.725 170   0.991 0.990 0.032 0.043 2878450.276 2878924.468 

 Quadratic  3466.721 166 247.004 0.992 0.991 0.032 0.046 2878211.273 2878717.077 

             

South Carolina Linear 20000 4609.603 90   0.988 0.986 0.050 0.076 2123841.525 2124197.182 

 Quadratic  3456.152 86 1153.451 0.991 0.989 0.044 0.038 2122696.074 2123083.345 

             

Washington Linear 12957 2033.200 275   0.995 0.994 0.022 0.026 2385763.775 2386323.979 

 Quadratic  1923.339 271 109.861 0.995 0.995 0.022 0.025 2385661.914 2386251.996 

             

Wisconsin Linear 14926 2718.167 170   0.992 0.991 0.032 0.063 2148535.797 2148992.449 

 Quadratic  2490.324 166 227.843 0.992 0.991 0.031 0.062 2148315.954 2148803.050 
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TABLE 6 

 

Goodness-of- Fit Indexes of MLGM Models of MAP Mathematics Tests for Different States 
 

State Model N 2 df 2 CFI TLI RMSEA SRMR AIC BIC 

Colorado Linear 5417 3200.482 405   0.986 0.985 0.036 0.033 1202562.013 1203155.770 

 Quadratic  2983.488 401 216.994 0.987 0.986 0.034 0.033 1202353.011 1202973.156 

             

Illinois Linear 20000 11337.522 275   0.982 0.981 0.045 0.029 3618796.729 3619389.491 

 Quadratic  10322.301 271 1015.221 0.984 0.982 0.043 0.027 3617789.507 3618413.883 

             

Indiana Linear 10247 148965.438 560   0.580 0.553 0.161 3.559 2790203.181 2790962.829 

 Quadratic  71963.157 556 77002.281 0.798 0.784 0.112 0.995 2713208.900 2713997.487 

             

Kansas Linear 8966 4764.568 170   0.979 0.977 0.055 0.048 1264358.923 1264784.995 

 Quadratic  3921.295 166 843.273 0.983 0.980 0.050 0.045 1263523.650 1263978.127 

             

Kentucky Linear 6602 3465.561 275   0.983 0.982 0.042 0.020 1211001.089 1211510.724 

 Quadratic  2988.207 271 477.354 0.986 0.984 0.039 0.018 1210531.735 1211068.550 

             

Michigan Linear 6827 4184.200 275   0.981 0.979 0.046 0.024 1245720.842 1246232.990 

 Quadratic  3822.681 271 361.519 0.983 0.981 0.044 0.024 1245367.323 1245906.785 

             

Minnesota Linear 20000 15870.194 170   0.970 0.966 0.068 0.093 2857014.335 2857488.544 

 Quadratic  13337.092 166 2533.102 0.975 0.971 0.063 0.082 2854489.233 2854995.056 

             

South Carolina Linear 20000 13233.352 275   0.980 0.978 0.049 0.027 3649802.550 3650395.312 

 Quadratic  11124.677 271 2108.675 0.983 0.981 0.045 0.021 3647701.876 3648326.251 

             

Washington Linear 14278 8230.010 170   0.978 0.976 0.058 0.046 2049743.767 2050197.755 

 Quadratic  7615.228 166 614.782 0.980 0.977 0.056 0.042 2049136.985 2049621.239 

             

Wisconsin Linear 15356 9389.812 275   0.980 0.978 0.046 0.024 2780059.981 2780632.926 

 Quadratic  8310.063 271 1079.749 0.982 0.980 0.044 0.022 2778988.233 2779591.735 
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TABLE 7 

 

Goodness-of- Fit Indexes of Invariances of Linear MLGM Models of MAP Reading Tests  

 

State Model* N 2 df 2 CFI TLI RMSEA SRMR AIC BIC 

Colorado CI 5082 619.234 170  0.996 0.996 0.023 0.044 741066.826 741458.834 

 WI  764.490 182 145.256 0.995 0.995 0.025 0.092 741188.082 741501.688 

 SI  1264.094 194 499.604 0.991 0.991 0.033 0.096 741663.686 741898.891 

Illinois CI 20000 3039.390 170  0.993 0.992 0.029 0.050 2890494.433 2890968.642 

 WI  3220.062 182 180.672 0.993 0.992 0.029 0.073 2890651.105 2891030.472 

 SI  6975.913 194 3755.851 0.984 0.984 0.042 0.079 2894382.956 2894667.482 

Indiana CI 10433 2056.374 275  0.992 0.991 0.025 0.040 1928420.139 1928964.094 

 WI  2296.707 291 240.333 0.991 0.991 0.026 0.080 1928628.472 1929056.383 

 SI  4603.455 307 2306.748 0.981 0.981 0.037 0.088 1930903.220 1931215.088 

Kansas CI 8894 2110.578 275  0.991 0.990 0.027 0.043 1634280.583 1634812.568 

 WI  2524.264 291 413.686 0.988 0.988 0.029 0.099 1634662.268 1635080.763 

 SI  4233.895 307 1709.631 0.980 0.980 0.038 0.099 1636339.899 1636644.904 

Kentucky CI 6520 1179.054 275  0.994 0.994 0.022 0.029 1206322.986 1206831.683 

 WI  1234.003 291 54.949 0.994 0.994 0.022 0.049 1206345.935 1206746.110 

 SI  2077.320 307 843.317 0.989 0.989 0.030 0.058 1207157.252 1207448.905 

Michigan CI 6833 1299.092 170  0.992 0.991 0.031 0.052 989251.073 989660.844 

 WI  1394.311 182 95.219 0.991 0.991 0.031 0.086 989322.292 989650.109 

 SI  2839.156 194 1444.845 0.981 0.981 0.045 0.092 990743.137 990989.000 

Minnesota CI 19994 3713.725 170  0.991 0.990 0.032 0.043 2878450.276 2878924.468 

 WI  3910.535 182 196.81 0.991 0.991 0.032 0.070 2878623.087 2879002.440 

 SI  8089.829 194 4179.294 0.981 0.981 0.045 0.078 2882778.381 2883062.896 

South Carolina CI 20000 4609.603 90  0.988 0.986 0.050 0.076 2123841.525 2124197.182 

 WI  4891.837 98 282.234 0.987 0.986 0.049 0.112 2124107.759 2124400.188 

 SI  6308.980 106 1417.143 0.983 0.983 0.054 0.118 2125508.902 2125738.104 

Washington CI 12957 2033.200 275  0.995 0.994 0.022 0.026 2385763.775 2386323.979 

 WI  2181.778 291 148.578 0.994 0.994 0.022 0.052 2385880.353 2386321.047 

 SI  3608.474 307 1426.696 0.990 0.990 0.029 0.060 2387275.050 2387596.233 

Wisconsin CI 14926 2718.167 170  0.992 0.991 0.032 0.063 2148535.797 2148992.449 

 WI  2901.072 182 182.905 0.991 0.991 0.032 0.093 2148694.703 2149060.024 

 SI  5040.002 194 2138.93 0.984 0.984 0.041 0.099 2150809.632 2151083.623 

* The levels of model constraints restricted to be equal across grades are:  CI:  Configural Invariance, WI: Weak Invariance, SI:  Strong Invariance 
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TABLE 8 

 

Goodness-of- Fit Indexes of Invariances of Linear MLGM Models of MAP Mathematics Tests  

 

State Model* N 2 df 2 CFI TLI RMSEA SRMR AIC BIC 

Colorado CI 5417 3200.482 405  0.986 0.985 0.036 0.033 1202562.013 1203155.770 

 WI  3327.537 425 127.055 0.985 0.985 0.036 0.057 1202649.064 1203110.875 

 SI  5630.506 445 2302.969 0.974 0.974 0.046 0.065 1284353.034 1284814.845 

Illinois CI 20000 11337.522 275  0.982 0.981 0.045 0.029 3618796.729 3619389.491 

 WI  12480.270 291 1142.748 0.980 0.980 0.046 0.082 3619907.480 3620373.786 

 SI  20906.282 307 8426.012 0.967 0.968 0.058 0.088 3628301.492 3628641.342 

Indiana CI 10247 148965.438 560  0.580 0.553 0.161 3.559 2790203.181 2790962.829 

 WI     ** ** ** ** ** ** 
 SI  135770.462 608  0.617 0.625 0.147 ** 2776912.205 2777324.585 

Kansas CI 8966 4764.568 170  0.979 0.977 0.055 0.048 1264358.923 1264784.995 

 WI  5255.879 182 491.311 0.977 0.976 0.056 0.121 1264826.234 1265167.091 

 SI  9666.501 194 4410.622 0.957 0.958 0.074 0.126 1269212.855 1269468.498 

Kentucky CI 6602 3465.561 275  0.983 0.982 0.042 0.020 1211001.089 1211510.724 

 WI  3652.142 291 186.581 0.982 0.982 0.042 0.059 1211155.670 1211556.582 

 SI  6026.435 307 2374.293 0.970 0.970 0.053 0.070 1213497.964 1213790.154 

Michigan CI 6827 4184.200 275  0.981 0.979 0.046 0.024 1245720.842 1246232.990 

 WI  4373.172 291 188.972 0.980 0.980 0.045 0.059 1245877.814 1246280.703 

 SI  7279.799 307 2906.627 0.966 0.967 0.058 0.071 1248752.440 1249046.072 

Minnesota CI 20000 15870.194 170  0.970 0.966 0.068 0.093 2857014.335 2857488.544 

 WI  17282.766 182 1412.572 0.967 0.966 0.069 0.139 2858402.908 2858782.275 

 SI  27832.970 194 10550.204 0.947 0.948 0.084 0.142 2868929.112 2869213.637 

South Carolina CI 20000 13233.352 275  0.980 0.978 0.049 0.027 3649802.550 3650395.312 

 WI  14894.473 291 1661.121 0.977 0.977 0.050 0.095 3651431.671 3651897.977 

 SI  22617.917 307 7723.444 0.965 0.966 0.060 0.094 3659123.116 3659462.966 

Washington CI 14278 8230.010 170  0.978 0.976 0.058 0.046 2049743.767 2050197.755 

 WI  9544.553 182 1314.543 0.975 0.974 0.060 0.125 2051034.309 2051397.500 

 SI  14495.506 194 4950.953 0.962 0.962 0.072 0.135 2055961.262 2056233.656 

Wisconsin CI 15356 9389.812 275 9389.812 0.980 0.978 0.046 0.024 2780059.981 2780632.926 

 WI  9653.384 291 263.572 0.979 0.978 0.046 0.047 2780291.554 2780742.270 

 SI  13743.973 307 4090.589 0.970 0.971 0.053 0.055 2784350.143 2784678.631 

* The levels of model constraints restricted to be equal across grades are:  CI:  Configural Invariance, WI: Weak Invariance, SI:  Strong Invariance. 

**: Not available. 
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FIGURE 1.  The MLGM at five time points with linear growth structure and invariance of  

 factor loadings. 
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FIGURE 2.  The MLGM at five time points with quadratic growth structure and invariance of  

factor loadings. 
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FIGURE 3. Observed individuals growth of Y[11] of MAP mathematics test across five-wave for 

Colorado  

 

 

 
 

FIGURE 4. Estimated individuals quadratic growth of Y[11] of MAP mathematics test across five-wave 

for Colorado  
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Turning the page:  How smarter testing, vertical scales, and understanding of student 
engagement may improve our tests  

 
G. Gage Kingsbury and Steven L. Wise 
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Building an adaptive testing system requires the practitioner to blend basic research 

(Weiss, 1980) with technology and logistics that fit the situations in which the tests will be 

delivered (Sands, Waters, and McBride, 1997).  In this study, we will consider the research 

needs of an adaptive testing system that has been developed for use in a number of K-12 

settings (MAP:  Northwest Evaluation Association, 2009).  While many of the operational 

questions associated with the initial development of this system have been described 

earlier (Kingsbury and Houser, 1993; 1998), this study focuses on issues that relate current 

research findings to ongoing adaptive test development and administration. 

Primary and secondary educational systems bring unique issues to test development.  

Students commonly do not pay for the privilege of taking a test (as in certification, 

licensure, and college admissions testing).  They may not be the focus of the test, and may 

not find out the result of their test (as in NAEP testing and some NCLB testing).  Students 

may have varying degrees of motivation and preparation for a test.  Students may not know 

how to read well, which may hamper testing of other subjects.  Students range in age from 

about 5 to about 18 which provides all sort of interesting interactions between the student 

and the test. 

The upshot of these unique characteristics of K-12 testing is that there are hundreds 

of issues to be considered in the development of an adaptive test to be used in schools.  

Many of these are logistic and practical issues (i.e., “How many items can a kindergartner 
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take in a test before losing focus?” or “How many tests can be given in a school day with a 

given number of computers?”).  Others involve questions that have been addressed in the 

academic literature and can be applied with little change (i.e., “How do we select the next 

item to administer?” or “What scoring algorithm should we use?”).  While these questions 

are crucially important for adaptive test development, we will not be dealing with them in 

this study. 

Beyond these questions, there is a category of questions that need to be answered 

through research, and need to be answered within the context of K-12 education to be 

meaningful.  We will discuss three of these questions in this chapter.  The three questions 

that will be addressed are as follows: 

1. Can a stable vertical measurement scale be established that allows the 

measurement of student achievement levels and achievement growth between 

grades and across years? 

2. Can we identify students who are not giving full effort on a test, and how can we use 

the information if we can obtain it? 

3. Can we adapt our tests using information aside from the momentary achievement 

estimate for the student and the psychometric characteristics of the items? 

We have chosen to focus on these questions because they represent research 

questions in different states of done-ness.  The question of vertical scales has been 

answered in some settings and the methodology exists to answer it in any setting.  The 

question of student effort has been answered in some settings, but we know less about the 

processes for using the information.  Finally, the question of using additional information to 

adapt our tests has been asked, but is far from an answer.  These questions suggest the 
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range and the direction of future research that might be useful for additional development 

of K-12 adaptive tests. 

The stability of vertical measurement scales 

Current assessment regulations under No Child Left Behind require that tests be able 

to measure student proficiency at each grade, and allow the use of growth information in 

school accountability.  Questions concerning the development of measurement scales that 

have meaning across grade levels arise directly from the nature of the educational process.  

As students move from one grade to the next the things they are taught change noticeably.  

Student capabilities change markedly, from learning numbers to learning number facts to 

using numbers to solve simple calculation problems to understanding algebra to creating 

geometric proofs to understanding the uses of calculus in our daily life.  It does not seem 

possible that a single measurement scale can capture this wide variety of change in 

achievement. 

On the other hand, it is the challenge of measurement to create scales that measure 

underlying traits in circumstances that vary.  If we were talking about the measurement of 

temperature rather than student achievement, few folks would argue that temperature is 

not a coherent trait.  However, when we examine the measurement of temperature, its 

characteristics are quite similar to those that we encounter in student achievement 

measurement.   

In order to measure temperature near room temperature, we can use a variety of 

different instruments.  In your home, you probably have alcohol thermometers, bimetal 

thermometers, electronic thermometers, and the little plastic device that pops up when 

your turkey is done cooking.  Each of these devices measures a different kind of physical 

change in the characteristics of objects when they are heated or cooled (expansion, 
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differential expansion, differential resistance, and wax melting into liquid, for the 

thermometers mentioned).  However, each device uses its information to make an 

inference about a single underlying trait, which may be measured on the Celsius scale (or 

the Fahrenheit scale, or a variety of other temperature scales).   

As we move to temperatures close to absolute zero or temperatures in the core of a 

star, different instrumentation is required to measure temperature, but the measurement 

scales remain the same.  Further, the physical characteristics of the object having its 

temperature measured may change noticeably as the temperature changes.  For instance, 

water changes from ice, to liquid water, to steam as its temperature changes, but it is still 

clear that the attribute being measured is the same, even though the object being 

measured changes its characteristics markedly.  Scales for temperature have been 

established, and endure unchanged across years. 

So, considering student achievement, rather than temperature, the question 

becomes whether we can create a scale that measures a useful characteristic of student 

achievement that has meaning, regardless of the items that are used to measure it or the 

activities the student uses to express it.  Research indicates that we can create such a 

scale, and that the scale can maintain its measurement characteristics over long periods of 

time. 

Creating a vertical measurement scale 

Education is all about time.  A student grows from a novice reader to an expert over 

a period of a few years.  A school district changes its curriculum and its students begin to 

learn more quickly.  A state has a change in its tax revenue, and schools shorten the school 

year, causing students to learn less.  In order to make these effects on learning knowable, 

we need a measurement scales that span both grades and years.  Changing tests and 



5 | P a g e  

 

fluctuating statistics have made it difficult for educators to find constant scales in the 

past. 

This ability to measure consistently across time is never more important than within 

the context of an adaptive test being used across grades in a course of instruction.  Each 

test that is given depends on the measurement scale to provide equivalence with other 

tests, and this need expands quickly when tests are given across a period of several years 

using an item pool that may also change across time. 

Two measurement scales developed with these needs in mind are the reading and 

mathematics scales developed by the Northwest Evaluation Association.  These scales, 

known as the RIT scales, are associated with large item banks that are used to develop 

achievement tests for use in many schools.  The one-parameter logistic (1PL) IRT model 

(Wright, 1977), along with a sophisticated item linking design, was used to create these 

measurement scales during the late 1970s. 

Since then, thousands of items have been added to these item banks.  Each new 

item has been connected to the original measurement scale through the use of IRT 

procedures and systematic calibration design (Ingebo, 1997).   

These measurement scales are used to develop adaptive tests and to measure 

individual student growth.  Since both of these activities depend to a great extent on the 

item parameter estimates, it is crucial that the invariance assumption hold in this 

application.  While some variability in item parameter estimates is expected, too much 

variability could cause growth measurement to be quite problematic.  Growth is a difficult 

quantity to measure under the best conditions, so a stable scale is a prerequisite to 

maintaining accuracy in growth measures. 
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The stability of a vertical measurement scale 

For purposes of this discussion, we can define scale stability as the ability of the 

scale to ascribe the same measure to the same amount of the attribute of interest over a 

period of time.  This definition allows the characteristics of the tested population to 

change over time, while requiring the scale to give the same score (within measurement 

error) to individuals with the same capabilities taking tests at different times.  Ideally, the 

scale would remain a consistent indicator across long periods of time, so that trends in the 

attribute of interest can be observed over many years, and so that change in the attribute 

within a single individual may be observed.   

Even though long-term scale stability is imperative to our ability to observe patterns 

of growth, few studies have examined the long-term stability of IRT item parameter 

estimates.  Two studies that have investigated the issue were conducted by Bock, Muraki, 

and Pfeiffenberger (1988) and by Sykes and Fitzpatrick (1992). 

Bock et al. (1988) investigated the stability of the item parameter estimates in the 

3-parameter logistic IRT model from the College Board Physics Achievement Test over a 

period of ten years using an ANOVA design and looking for a two-way interaction between 

items and occasions.  The authors found that there was a statistically significant drift in 

item difficulty across time.  The authors interpreted the drift as being due to changes in 

physics instruction across the time period under investigation.  The authors performed a 

similar analysis of the College Board English Achievement Test, and found no evidence of 

drift.  Since the focus of this study was on the development of a statistical model to allow 

for drift, rather than on the drift itself, the authors did not discuss the impact of the 

observed drift on test scores. 
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Sykes and Fitzpatrick (1992) investigated the stability of 1-parameter logistic item 

parameter estimates for 285 items from a professional licensure test administered over a 

period of five years.  This study found drift in item difficulty parameter estimates that was 

directional, with items being estimated to be more difficult across time.  When the 

investigators examined the source of the drift, it did not seem to be associated with item 

position or item type.  As in the previous study, the authors hypothesized that the change 

in difficulty estimates was associated with changes in curricular emphasis.  Since the 

emphasis in this study was on the covariates of drift, the authors didn’t discuss the impact 

of drift on candidate scores. 

In practice, IRT item parameter estimates will not be invariant.  Estimates will vary 

due to a number of factors that have been researched fairly extensively in the past.  These 

factors include sampling fluctuation (Swaminathan & Gifford, 1983), departures from 

unidimensionality (Bejar, 1980), and other characteristics of the calibration design such as 

item context (Yen, 1980).  To make matters more complex, the type of test used to create 

item parameter estimates and the algorithm used to compute the estimates will also 

influence the stability of the item parameter estimates (Ban, et al, 2001).  All of these 

factors that may affect the accuracy of item parameter estimates suggest that we should 

be cautious in relying on the invariance property of IRT in practical settings without 

verification.    

While the research in the literature is quite useful, it is practical to describe in 

detail a study done with the vertical scales that are used with the MAP (Measures of 

Academic Progress) tests.  This study, reported by Kingsbury (2003), extends the earlier 

work in several ways.  First, it investigates stability of item parameter estimates in a large 

item bank rather than a set of items used in a single test.  Second, it uses a measurement 
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scale that has been designed to measure student growth across time, rather than tests 

designed to be taken only once.  Third, it uses a longer elapsed time since initial 

calibration, ranging from 7 to 22 years.  Fourth, it examines the amount of impact that 

item parameter drift might have on student scores.  The full study included information 

about both reading and mathematics, but only mathematics will be discussed here. 

The stability of measurement scales may be viewed in two ways.  First, we may 

investigate whether individual items have changes in their difficulty estimates across time.  

If there is more change (drift) than expected due to sampling variability, we may identify 

this as a problem with the invariance assumption.  Second, we may ask what impact any 

identified drift may have on the test scores from our assessments and what impact the drift 

may have on decisions that are made as a result of the assessments.  The Kingsbury (2003) 

study investigated the issue from both perspectives. 

Method. 

3091 mathematics items were administered to students from grades 2 to 10 in 10 

school districts from 7 different states as a part of their districtwide assessment programs 

in the 1999-2000 school year.  Each student took approximately 50 items.  All items were 

multiple-choice, with original item difficulty estimates that were obtained at least 7 years 

prior to the study.  Approximately 320 test forms were used in the study.  Over 100,000 

student test events were used for the study. 

The items were administered within the context of an achievement level test 

(Kingsbury & Houser, 1997).  An achievement level test is a paper-and-pencil test that has 

approximately seven different forms (levels) designed to differ in difficulty.  Students are 

administered a particular form chosen for them individually based on past tests scores or 
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using scores from a routing test.  This design is equivalent to a two-stage adaptive test 

(Lord, 1971).  

 Any individual student took approximately 50 mathematics items.  Since different 

achievement level tests were used in the different school districts involved in this study, 

any individual item was seen by only a small sample of the students involved.  The 

combination of all test forms across all school districts and grades resulted in the sparse 

data matrix that was used for calibrating all of the items in the study. 

The original IRT item difficulty estimates for all of these items were created 

between 1977 and 1993.  The mean time between the original calibration and the new 

calibration was 16 years and 1 month.  The original item difficulty estimates were obtained 

using a marginal maximum-likelihood calibration procedure (Houser, Hathaway, & Ingebo, 

1983).   

The new item difficulty estimates were created using the data collected in the 1999-

2000 school year.  Since few students took the same items and no student took a very large 

percentage of the items, the calibration procedure used was a procedure designed for use 

with adaptive tests and other sparse data structures (Houser, Kingsbury, & Harris, 1997).  

This procedure is mathematically equivalent to the marginal maximum-likelihood 

calibration procedure originally used to calibrate the items.   

After elimination of items with very small samples, 2359 items were available for 

use.  Calibration sample sizes for these items ranged from 300 students to over 10,000 

students.  A minimum student sample size of 300 was established to correspond to the 

minimum sample size that was allowed in the original calibration procedure. 

 

Analysis. 
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While there are a variety of statistical tools available for identifying parameter estimate 

drift (see Donoghue & Isham, 1998), the use of the 1PL model simplifies matters 

substantially.  In this study, simple differences between original and new difficulty 

estimates were used.  Two analyses were conducted for each measurement scale in the 

study. 

Scale drift analysis.  The scale drift analysis included several aspects.  First, 

correlations between the new and original item difficulty estimates were calculated and 

compared to correlations seen in other studies using the same measurement scales.  Next, 

frequency distributions of the differences between the original item difficulty estimates 

and the new item difficulty estimates were calculated.  These allowed the examination of 

the variability in parameter estimates.  Bias and mean absolute differences were also 

calculated and compared to standard deviations of student performance to begin to 

identify the impact of parameter drift.  Finally, item parameter estimate differences were 

examined as a function of the original calibration date to identify whether the elapsed 

time between the two calibrations contributed to observed drift.  This last analysis used a 

subset of the available items (2204 items) because some items were originally calibrated 

across several testing seasons. 

Impact analysis.  A second method of analyzing the effect of change in calibrations 

over time is to ask whether that change has a noticeable impact on students’ scores.  In 

this analysis two representative test forms used in the study were chosen as example tests.  

The two forms were middle-difficulty forms used in the fifth grade in a suburban school 

district in Indiana.  For each of these forms two raw-score-to-RIT scoring tables were 

created, one using the original parameter estimates and one using the new item parameter 

estimates (for the 1PL IRT model, a particular number-correct score is associated with a 
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single scale score, dependent only on the item parameter estimates).  The two scoring 

tables were then compared to identify the maximum difference caused by using the new 

item parameter estimates.  By comparing the scale scores obtained from the two sets of 

calibrations for a particular raw score, we can identify how much a particular student’s 

test score would have changed as a result of any item parameter drift that occurred. 

 

Results 

The observed correlation between the original and new item difficulties estimates was 

.967.  While this correlation is close to unity, it is useful to compare it to correlations 

obtained in other studies using the same measurement scales.  Ingebo (1997) described a 

series of experiments from the 1970s in which multiple, concurrent samples were drawn to 

calibrate a set of items from these scales, to identify the consistency of the calibrations.  

In those studies, the correlations of mathematics difficulty estimates across samples 

ranged from .95 to .99.  The results from the current study mimic those from these earlier 

studies in which the samples were drawn concurrently. 

Although the correlations provide some evidence of stability, they don’t provide 

information about the differences observed on an item-by-item level.  Figure 1 shows the 

frequency distribution of the differences observed subtracting the new calibration of item 

difficulty from the original calibration for each item.  It can be seen that the distribution is 

fairly symmetric around a difference of zero.  It can further be seen that few items have 

difficulty differences of more than ten RIT points (approximately one  unit).   

[Insert Figure 1 here] 
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Figure 2 shows the relationship between the original item difficulty estimates and 

the new difficulty estimates for each item.  The relationship appears visually linear, and 

corresponds well to the superimposed line of identity.  The figure shows no evidence of 

drift associated with the difficulty of the items, and gives no indication of a non-linear 

trend in the item calibrations. 

[Insert Figure 2 here] 

The directional drift (bias or average difference) in item difficulty estimates 

observed was -.17 RIT points in mathematics.  To put this in context, the standard 

deviation of students’ scores in sixth grade in the most recent norming study done using 

these measurement scales (NWEA, 2005) was 14.8 RIT points in mathematics.  The drift 

that has occurred in the scale over the 16.1 years of elapsed time in the studied interval 

has had an impact of approximately .01 standard deviations on the mean item difficulty 

estimate.   

The average absolute difference in parameter estimates was 4.53 RIT points, with a 

median absolute difference of 4 RIT points.  As expected, this difference was larger than 

the directional drift, but still less than one-third of a standard deviation.  Given the small 

values for directional drift, we would expect these differences to balance out in a test of 

reasonable length.  This assumption will be investigated more completely in the impact 

analysis below. 

 

Impact Analysis 
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Figures 3 shows the RIT scores obtained from each number correct score for original 

and new difficulty estimates.  The figure shows clearly that the scores obtained from the 

new item difficulty estimates and the old estimates are extremely similar.  For the 

mathematics test, the maximum difference that could occur was 1.1 RIT points and the 

average magnitude of difference was less than .5 RIT points.  Since the smallest observable 

difference between two RIT scores is 1 RIT point, these differences are small enough to be 

rarely observable.  Given a typical distribution of RIT scores, the difference would be less 

than 1 RIT point in 99 of 100 cases.  Since the standard error of a score on one or these 

tests would be approximately 4 RIT points, the impact of the change in calibrations would 

not be expected to change instructional decisions. 

 

[Insert Figure 3 here] 

 

 

From this examination of the stability of a vertical measurement scale, we can draw two 

conclusions, as follows: 

1) There was no substantial drift in item difficulty estimates across the 

timeframe of this study, and no trend was seen in changes in difficulty 

estimates as a function of time since initial calibration. 

2) The largest observed change in student scores moving from the original 

calibrations to the new calibrations was 1.1 RIT points, with over 99% of 

expected changes being less that 1 RIT point. 
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While the overall conclusion of the study is that the measurement scales examined 

are stable across time, some individual items fluctuated noticeably from their original 

calibrations.  This suggests the need for ongoing calibration analysis.  Even with a fairly 

stable scale, individual items may have difficulties that vary across time.  A follow on study 

will investigate the characteristics of these highly variable items.  This study should enable 

us to identify whether the large changes in difficulty for a small number of items are 

possibly due to specific features of certain items or whether they might be due to changes 

in instruction that have reduced (or increased) a student’s opportunity to learn the content 

in the question.  Examples of items that might experience such fluctuation include the 

following: 

 

 An example of change specific to the item would be an item asking for a definition 

of the word “radical” which has had three most common definitions since the early 

1980s. 

 An example of change related to opportunity to learn might be seen in an item 

asking about the characteristics of a retro-virus.  In the late 1970’s only college-

level biology students would have been introduced to the concept, but now it is 

standard content in most high school biology courses. 

Building and maintaining a stable measurement scale is as much an exercise in 

engineering as it is an exercise in calibration.  The measurement scales under consideration 

here were originally designed using a four-square design (Wright, 1977) with multiple cross 

links within and across student grades.  It is expected that this original development has 

contributed to the ongoing stability of the measurement scales studied here.  Therefore, 
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while this study has indicated that stable measurement scales can be created in practice, it 

does not suggest that the use of IRT calibration alone will assure scale stability.   

In public education, there is ongoing debate about the quality of schools.  One 

overlooked element that causes the debate to continue is the inconsistent nature of much 

achievement information.  Different tests are used to measure student achievement in 

different grades in many locations.  If there isn’t a consistent measurement scale linking 

these tests, comparison of performance across grades is difficult.  In many cases, score 

equating is used to allow comparison from one year to another.  While this is a useful 

statistical technique, it isn’t designed to create stable measurement scales.   

A stable measurement scale allows the development of curriculum-referenced 

interpretation of test scores.  For instance, with the mathematics RIT scale, a student who 

was able to complete two-digit addition question correctly would obtain approximately the 

same score in the year 2002 that they would have obtained in 1980.  With this 

development, changes in test scores can be related directly to changes in student 

capabilities.  In turn, this will allow the identification of positive and negative trends in 

education as they happen. 

The procedures used in creating the measurement scales examined in this study have 

been successful in creating stability.  This is a requirement for good measurement and even 

more important if we are planning to measure change in a school or a nation across time.  

The results of this study indicate that we can create measurement scales that are 

meaningful not only for short-term comparisons, but for long-term studies as well. 
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Identifying students who are not trying their hardest 

Our conception of validity as the gathering of a body of evidentiary support for the 

use of test scores has solidified over the last three decades (Messick, 1980; Kane, 2001, 

Shepard, 1997).  Most of this evidence comes in the form of group statistics including 

correlations with important external variables, decision accuracy in groups and subgroups, 

and other information at the group level.  If a score-based inference is to be about 

individual students, however, evidence at the group level is a necessary but not sufficient 

condition to validate the use of a test score for a particular purpose for a specific student 

(Kingsbury & Hauser, 2007). 

What other evidence is needed?  Construct-irrelevant factors (Haladyna & Downing, 

2004) may influence the validity of some scores in a group, but not others.  For example, if 

Jonathan, who is taking a math test, suffers from test anxiety to the degree that his score 

is adversely affected, test anxiety can be considered a construct-irrelevant factor 

influencing Jonathan’s score.  In contrast, if no one else in Jonathan’s class suffers from 

test anxiety, test anxiety is not a construct-irrelevant factor influencing John’s classmates’ 

scores.  This implies that some scores are likely to be less valid than others.  This idea of 

focusing validation down to the level of specific scores is called individual score validity 

(ISV).  One definition of ISV is the degree to which a particular score is free from construct 

irrelevant factors (Wise, Kingsbury, & Hauser, 2009). 

In K-12 testing, a major ISV threat is student test-taking effort.  That is, obtaining a 

valid score for a given student requires both (a) that the test being given is appropriate for 

estimating that student’s proficiency level, and (b) the student devotes sufficient effort to 
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that test.  Without adequate effort, a student’s test performance is apt to underestimate 

what she knows and can do. 

The problems posed by low student effort affect our organization in several ways.  

First, because the scores from our MAP tests are used by teachers to help them make 

instructional decisions for each of their students, a non-effortful score is misleading.  If 

Katie doesn’t give good effort to her reading test, and her score is consequently lower than 

it should be, she may receive instruction in reading she doesn’t need.  Second, because 

MAP is an interim test used to measure student growth (as the difference between 

consecutive RIT scores) over multiple time periods, each non-effortful test score messes up 

two growth scores.  When the non-effortful score is the first score in the growth 

calculation, the “growth” score will be inordinately high.  When it is the second score, the 

“growth” score may be negative.  In either instance, growth can be seriously mis-estimated 

for that student.  Worse, the presence of such odd-looking growth scores potentially (and 

unfairly) threatens the credibility of the MAP assessment.  Finally, the presence of data 

from non-effortful test events threatens the validity of our test norms and may distort the 

calibrations of our embedded field test items. 

Measuring Student Effort 

It is therefore important to be able to identify test scores that have been distorted 

by low student effort.  How are these identifications to be made with an adaptive test?  

One method might to be to simply ask students at the end of their test the degree to which 

they tried.  While this type of self-report approach has some utility, it is unclear how 

truthfully students will respond, particularly if they are concerned about punishment (or at 

least disapproval) from their teachers if they indicated they didn’t try on their test.  A 

second, more data-based approach would be to compute person-fit indices for each 
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student.  In these methods, the aberrance of the item response pattern is evaluated by 

comparing the correctness of each item response to the probability of a correct response 

according to the IRT model being used.  Unfortunately, although such indices have utility 

with fixed item tests, they are not well suited for use with adaptive tests.  In these types 

of tests, the CAT algorithm strives to administer items whose probability of being passed by 

the student is around .50.  In these instances, both correct and incorrect responses would 

be equally aberrant, which undermines the sensitivity of the person fit index to detect 

aberrant response behavior.  An additional drawback of both self-report measures and 

person fit indices is that they both consider the test event as a whole, which makes it 

difficult to detect changes in student effort during the course of the test event (Wise & 

Kong, 2005). 

A third method for measuring student effort is provided by item response time, 

which can be readily collected during a CAT.  Wise and Kong (2005) showed that response 

time can be used to differentiate responses that occurred very quickly (termed rapid-

guessing behaviors) from the remaining responses (termed solution behaviors).  They 

developed an index of student test-taking effort, called response time effort (RTE), which 

equals the proportion a student’s responses that were solution behaviors.  Wise and Kong 

show validity evidence for RTE as a measure of test-taking effort. 

An additional source of information regarding student effort in an adaptive test is 

provided by rate at which items are passed (i.e., accuracy).  Students who are trying hard 

on a CAT should pass roughly half of their items.  Students who are not giving good effort, 

in contrast, should pass items at a rate that more resembles chance responding.  Hence, 

for example, a student who passed less than 30% of the administered items might be 

presumed to have behaved in a non-effortful fashion during the test. 
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Based on RTE and accuracy information, Wise, Kingsbury et al. (2009) developed five 

flagging criteria for identifying MAP test events that indicated low ISV. The percentages of 

test events that were flagged during fall and spring testing were 5.8% and 6.6%, 

respectively.  After removal of these test events from the data, the correlation between 

the fall and spring RIT scores increased from .79 to .82, even though the standard 

deviations of the RIT scores decreased in both testing seasons.  In addition, removal of the 

test events accounted for most of the extreme positive and negative fall-to-spring growth 

scores.  These findings are consistent with a conclusion that a source of construct-

irrelevant variance had been removed. 

The use of heuristic flags to identify unusual response patterns and response times is 

very practical, but it also requires new development when applying the heuristics to a new 

test or testing population.  In order to create a test that was designed to be repeatable in 

a wide variety of testing situations, Hauser and Kingsbury (2010) developed the Wariness 

Index (WI), which was designed to identify whether item response times and item response 

correctness are in keeping with expectation for each person/item interaction.  An initial 

study concerning the use of the wariness index indicated that it could be used to identify 

unusual performance in an adaptive mathematics test administered to a large sample of 

fourth grade students.   

Correlates of Rapid-guessing Behavior 

Three student characteristics have been identified that are related to test-taking 

effort.  The most consistent finding has been a gender effect; males have a tendency to 

exhibit lower mean levels of effort (Eklöf, 2007; Wise & DeMars, 2010; Wise, Kingsbury, 

Thomason, & Kong, 2004; Wise, Ma, Kingsbury, & Hauser, 2010; Wise, Pastor, & Kong, 

2009).  In addition, one study found that lower-ability college students (as measured by 
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SAT scores) were more likely than higher-ability students to exhibit non-effortful test-

taking behaviors (Wise, Pastor, et al., 2009).  This finding should be interpreted cautiously, 

however, as there have been several studies in the same measurement setting that did not 

find such a relationship (Kong, Wise, Harmes, & Yang, 2006; Wise et al., 2006; Wise & 

DeMars, 2006; Wise & Kong, 2005).  Finally, Wise et al., (2010), investigated MAP test 

events from grades 3-9, finding that, as grade increased, the occurrences of rapid-guessing 

increased. 

A number of item characteristics have been found to be related to effort.  Items 

that require more reading by the student are more likely to receive rapid-guessing behavior 

(Wise, 2006; Wise, Pastor, et al., 2009).  Wolf, Smith and Birnbaum (1995) found that 

effort on test items was influenced by their levels of mental taxation (i.e., how much 

mental effort was required by an examinee to reach a correct answer), with more taxing 

items receiving less effort.  Wise, Pastor, et al. (2009) found that items presenting a 

greater number of response options received fewer rapid guesses, as did items containing a 

graphic.  Wise et al. (2010) found differences in rapid-guessing behavior across content 

area; students were substantially more likely to exhibit rapid guesses in reading than in 

math. 

Regarding the context in which an item is presented, the position at which an item 

occurs in a test has been related to the amount of effort it receives.  Items occurring later 

in a test are more likely to receive rapid guessing (Wise, 2006; Wise, Pastor, et al., 2009).  

Wise, Owens, Yang, Weiss, Kissel, Kong, and Horst (2005) found significant differences 

among test session proctors in the average amount of effort exhibited by examinees in 

their sessions.  In addition, Wise et al., (2010) found that rapid guessing was related to the 
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time of day that testing occurred; as the day progressed through the morning into the 

afternoon, the more likely that rapid-guessing behavior was to occur. 

Thus, the research to date has identified a number of correlates of rapid-guessing 

behavior.  Characteristics of the students, the items, and the context in which the test is 

administered can each affect the likelihood that rapid guessing occurs.  In the next section, 

we will examine how we might apply our knowledge of these correlates to improve student 

effort. 

What can we do about low effort? 

Having identified a student who did not try his or her hardest on a test, what can we 

do about it?  There are several choices available.  The first is simply to report it to the 

individual(s) who will make inferences about the student’s score.  Information regarding 

untrustworthy scores should be useful to anyone who interprets the scores, so developing 

reports that identify the scores reflecting low student effort will be useful.  Second, 

because non-effortful behavior is usually identifiable in only some of a student’s item 

responses, it may be possible to “salvage” a more valid score from those item responses 

that reflected solution behavior.  Wise & DeMars (2006) developed an effort-moderated IRT 

model that effectively excludes rapid guesses from proficiency estimation.  They found 

evidence of improvements in both model fit and convergent validity when this model was 

used, as compared to a traditional IRT model.  

Although enhanced score reports and improved scoring models allow us to deal with 

non-effortful test taking after it occurs, there are more proactive options available.  First, 

we might strategically test in ways that reduce how much rapid-guessing behavior occurs in 

the first place.  One might, for example, test earlier in the day, using shorter tests with 

items that either do not involve a lot of reading or mental taxation, or use items that 
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include a table or graphic.  A second option would be to try to identify rapid-guessing 

behavior as it occurs, and try to preempt it.  Wise, Bhola and Yang (2006) developed an 

effort-monitoring computer-based test (CBT).  In this type of test, the computer monitored 

item response times for rapid-guessing behavior, and displayed warning messages to 

students who had begun to exhibit non-effortful behavior.  Two experimental studies 

(Kong, Wise, Harmes, & Yang, 2006; Wise, Bhola, et al., 2006) found that, for students 

deserving warnings, both effort and test performance were improved when an effort-

monitoring CBT was used.  The effort-monitoring CBT is a rudimentary example of a 

smarter adaptive test, which will be discussed in the next section. 

 

Expanding the nature of test adaptation:  Smart tests  

 The third aspect of adaptive testing that we will discuss here is the expansion of 

adaptive capabilities in testing to use additional information that can be made available 

during a test event.  This development is in its infancy, but holds promise for improving 

testing practice in education and in other areas.   

 Most fixed-form tests used nothing more than a student’s grade level to assign a test 

form that was designed in advance to match a content blueprint.  As we have moved to 

adaptive testing, we began to use information about items (commonly IRT parameter 

estimates) to select items that were tailored to the performance of each student.  Most of 

the techniques of item selection currently used in operational adaptive tests were 

developed in the 1970s and 1980s.  It is time to begin to use the abundant additional 

information that we have in a testing situation to improve our tests. 
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 In order to create smarter tests, we need to consider the elements in a testing 

situation that provide us information.  Figure 4 shows some of the active elements present 

in most testing situations.  The student brings his knowledge and achievement into a test 

environment that has a proctor, a test engine, and a host of other elements that might 

provide information about the student’s capabilities and might also influence the outcomes 

from the test.  While it is not a comprehensive list, here are some of the important 

influencers that the testing elements possess: 

 Student – achievement, gender, involvement, interests, traits, states, fatigue, 

breakfast, educational history 

 Environment – time of day time of year, lighting, noise, fire alarms 

 Test Engine – user interface, delivery platform, test entry, item selection, scoring 

test termination, reporting, feedback, data capture, informational messages 

 Proctor – training, experience, attitude, other jobs, interest, breakfast 

 Hardware – backbone, bandwidth, local servers, video capabilities, audio quality 

 Items – item pool characteristics, item difficulty, reading load, related items, 

multipart items, response format 

 Test Purpose – stakes for student, stakes for teacher, stakes for school, stakes for 

external bodies, test length, use of test data in instruction 

Our tests can become smarter through an understanding of most of these dimensions 

(including breakfast) but as examples, we will focus on student interests and on item 

selection. 
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Using student interests to make tests smarter 

 We know that students do better on tasks that involve topics in which they have a 

personal interest.  We also know that students vary dramatically in their interests.  We 

know that items reflect a wide variety of content that taps into different aspects of 

student interest.  We also know that items can be created on the fly with known 

characteristics, including content designed to tap particular interests (Fredrickson, Mislevy, 

and Bejar, 1993).  Given those pieces of information, it appears that we should be able to 

make our tests smarter by using information about a student’s interests.   

While there are a variety of ways to use information about student interests, some of the 

approaches might include the following: 

 Select items with known non-trait-related content weighted by a student’s interests 

 Customize item non-trait-related content to adjust to the weighting of a student’s 

interests 

 Select items with modalities that match each student’s learning styles 

 Give students control over non-trait-related content in test questions 

 So, if we consider only the first approach (selecting items with particular content), 

an example might go as follows: 

Marie takes a short survey in class that indicates she is interested in horses and art.  

This information is captured and fed into the testing system.  When Marie takes a 

test later in the semester, the system uses Marie’s interests in choosing test 

questions.  If, as Marie takes the test an item including content about horses or art is 

included in high-information items that might be chosen, the interest weighting 
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would increase the probability that Marie would see this question.  In this manner, 

interest weighting would be used with algorithms that are currently used for 

exposure control, but in this case increasing the likelihood of seeing particular items 

for particular individuals.  As a result, Marie would tend to see more items including 

horses and art than the average student, which may keep her more engaged in the 

testing experience. 

 While interest weighting has the potential to make our tests smarter through 

improving the match of content to interests, research is needed to determine whether this 

approach results in more meaningful test scores.  Interest weighting could be combined 

with measures of student involvement, so that if a student was not engaged in the test, 

more items with content of interest would be administered.  As we begin to make changes 

like this in our testing systems, it is important to continue to monitor scores for their 

predictive validity and generalizability. 

Using new item selection techniques to make tests smarter 

 Current approaches to item selection use a limited set of item characteristics (IRT 

item parameter estimates, item content standard, etc.).  These characteristics are used in 

the context of an existing test blueprint to create the final test of the required length with 

the required content distribution.  For certification and licensure tests, this is sometimes 

modified to allow variable test lengths that result in decisions with a given confidence 

level.  The most advanced approach currently used is a combination of Stocking’s 

procedure for using multiple constraints (Stocking and Swanson, 1993) within the context 

of a shadow test (van der Linden and Veldkamp, 2004). 
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 While these approaches provide tests of very high quality, we have more information 

about the items than we are currently using.  Some of the information that we have about 

individual items includes reading load, non-trait related content, average response time, 

word count, response mode, depth of knowledge, and a host of other characteristics.  

These characteristics may be used to enhance our item selection.  Some of these 

enhancements may include the following: 

 controlling expected response time so that a test fits into a given time period, while 

still allow the test to be untimed 

 adjusting the reading load of the test (in mathematics and science) to account for 

the reading achievement of the student 

 individualizing the difficulty of items that a student sees to maintain maximal 

involvement 

 individualizing weighting of items with different response modes to match the style 

of the student 

 Controlling item selection to keep a student engaged 

 Once again, it is useful to give an example of the use of one of these approaches in 

selecting items for a student.  Here we will consider controlling expected response times. 

Zack is a fourth grade student who is an able reader and pretty good in 

mathematics.  As he is taking his smart adaptive test in math, he encounters a series 

of items that are challenging to him, but he perseveres and finishes each question.  

As he moves toward the end of the test, the item selection algorithm notices that 
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Zack seems to be losing his engagement in the test (using the tools described in the 

section above).   

To reengage Zack, the smart test takes three different actions.  First, it gives Zack 

an informative message suggesting that he continue to try his hardest.  Second, it 

begins to select slightly easier questions for Zack, to allow him to reengage without 

much loss of accuracy.  Third, it begins to overweight items which may be of 

interest to Zack even more than before.  At the same time, the system alerts the 

proctor to watch Zack to make sure he isn’t getting sick or in need of a bathroom 

break.   

If Zack reengages in the test, we may be able to provide a score for Zack that is a 

more valid indicator of his achievement.  This should have positive repercussions for 

Zack, his teachers, and our educational system as a whole. 

 Creating smarter test may allow us to have more control over test score validity but 

it is very much a work in progress.  Whether it works in practice remains to be seen.  

Substantial research is needed in this area to identify whether and to what extent 

approaches to make tests smarter also improve the validity and generalizability of test 

scores without noticeably reducing score precision.    

Ramifications 

Stable vertical scales 

 In education, the impact of stable scales should be substantial.  In other areas the 

development of stable scales has allowed us to measure length and weight and 

temperature.  Any of these concepts can now be measured with consistent meaning from 
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one country to another and from one year to the next.  There is no reason that educational 

achievement cannot be measured in the same manner, with consistent meaning and known 

precision. 

 The impact of vertical scales (when meshed with high-quality measurement 

instruments) may have educational impact that is more personal, but as substantial.  

Vertical scales allow the measurement of individual change as a student progresses from 

one year to the next and one classroom to another.  Having this type of growth information 

at the student level will eventually allow us to examine how our educational system is 

serving each student. 

 In certification and licensure, the development of stable vertical scales opens up 

new possibilities for recertification and advanced licensing in the professions.  We can 

imagine a time in which we can measure growth in professional capacity as well as initial 

competency, to provide a more complete picture of the capabilities of each candidate and 

professional. 

Identification of student engagement 

If a student is not attending to a test as well as they should, this might have a variety of 

interpretations, and it might mean 

 that the student is not engaged in school 

 that the student has difficulty with responsibility 

 that the student is anxious in the testing setting 

 that breakfast was bad 
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Some of these meanings are immediately addressable, but others require more long-term 

intervention.  The initial indicator in the testing setting would suggest approaches to follow 

up to help the student thrive in education.   

The evidence that indicates that individuals vary in their engagement with 

achievement tests is substantial.  Further, the studies above show that we can identify 

many students who are not engaged in these tests.  While the approaches that we use to 

identify the unengaged may differ, it is clear that identifying them is imperative.  In the 

past, we have assumed that students are all equally engaged in using the trait of interest 

to answer the questions on each test that they take.  If we are actually seeing results that 

differ do to differential engagement, we need to rethink many of our current conceptions 

of educational achievement.   

As an example, we see differential test performance among groups, and we 

interpret it as an achievement gap.  However, if the gap is in part caused by differential 

engagement, then our interpretation of that gap and corrective actions that we might take 

concerning the gap may change substantially.  Only when we begin to measure student 

engagement can we expect to understand differences in average scores among groups. 

Beyond education, the techniques that are developed for identifying engagement in testing 

have immediate application to psychological testing.  Much of the value of well-designed 

psychological instruments comes from their capability to identify individuals who are lying, 

responding in a socially desirable manner, or not taking the assessment seriously.  The 

approaches designed to identify test engagement may allow us to obtain unobtrusive 

information that will predict these other psychological machinations more easily, and at 

less cost of individual time. 
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Creating smart tests 

 As we begin to create smarter tests, they should allow us to forge more direct 

relationships between assessment and instruction.  The information from smart tests should 

allow us to provide teachers with information about individual response styles, speed of 

performance, appropriate level of challenge, and response to control.  The smart test 

should allow a feedback loop to develop so that new information about the student from 

the teacher improves the next test the student takes, and new information from the test 

allows the teacher to understand how the student learns best.   

 Beyond education, the idea of smart tests should help change our psychological 

instruments, and may have substantial value in certification and licensure.  In psychological 

testing, we can foresee a vocational instrument that adjusts as the assessment proceeds, 

so that the outcome can be much more tailored to the needs of the individual, combining 

abilities and strengths with interests and communication style.  In certification testing, 

many aspects of job performance that aren’t immediately apparent in a single test score 

can be captured in a smart test.  The potential for substantial improvement in certification 

decisions helps not only the testing profession but the consumers of a wide variety of 

professional services as well. 

Conclusion 

 We have considered stable scales, student engagement, and smarter tests.  Research 

leading to testing decisions in these areas is at substantially different points of 

development.  However, work in each of these areas is attempting to bring us to an era in 
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which our tests provide more information, more valid information, and more generalizable 

information.   

 In our application, decisions based on stable vertical scales have allowed us to 

determine how accurate our adaptive tests must be to allow us to measure individual 

growth during a year of instruction.  They have also allowed us to connect test scores 

directly to the skill that a student knows now, what they are challenged by learning next, 

and what they aren’t quite ready to learn yet.  This information provides teachers with the 

ability to shape classroom instruction to match the needs of each of their students. 

 We are starting to implement processes to identify students who aren’t engaged in 

the tests they are taking.  We expect the ability to identify these students to have 

substantial impact in instruction, but we also expect it to change the conversation around 

effective schooling.  Currently, low test scores are commonly viewed as indicating poor 

teaching, but engagement research may help us differentiate students who don’t know the 

content from those who know the content but aren’t engaged in the testing activity. 

 The next generation of computer-based tests promises to enhance our ability to 

obtain more valid scores.  By expanding our conception of what an adaptive test can do, 

we will begin to develop smarter tests that can effectively manage construct-irrelevant 

factors that limit the validity of individual student scores. 
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Figure 1.  Frequency of mathematics items as a function of the difference between the 

original item difficulty estimate and the new item difficulty estimate on the RIT scale 

(rounded to the nearest integer). 

Figure 2.  Relationship of original and new item difficulty estimates on the RIT scale for 

2359 items in mathematics with superimposed identity line (r = .967). 

Figure 3.  RIT scores as a function of obtained number correct score calculated using 

original and new mathematics difficulty estimates. 

Figure 4.  Some of the primary elements that have an influence on the outcomes of a test 

event. 
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Figure 3.  RIT scores as a function of obtained number correct score calculated using 

original and new mathematics difficulty estimates. 
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Figure 4.  Aspects of the educational ecosystem that influence the interaction between a 

student and a test 
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Abstract 

In low-stakes testing programs, test givers have the dual responsibilities of developing and 

administering a high-quality test that can yield valid scores and motivating examinees to give 

good effort to that test.  However, unmotivated examinees represent a major threat to validity of 

scores from these types of tests.  This integrative review examines the motivational benefits of 

computerized adaptive tests (CATs), and shows that they can have important advantages over 

conventional tests in both identifying instances when examinees are exhibiting low effort and 

effectively addressing the validity threat posed by unmotivated examinees. 
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The Utility of Adaptive Testing in Addressing the Problem of Unmotivated Examinees 

When we administer cognitive tests, we seek valid information about what examinees 

know and can do.  To that end, we typically encourage examinees to demonstrate the highest 

level of performance of which they are capable (Cronbach, 1960).  It has long been recognized, 

however, that “unless people are motivated to do their best on a test, their scores will not reflect 

their maximum performance capabilities” (Betz & Weiss, 1976a, p. 1).  The impact of test-taking 

motivation on performance can be sizable.  Wise and DeMars (2005) synthesized a set of 

research studies focused on the relationship between motivation and test performance, finding 

that more motivated examinees tended to outperform their less motivated peers by an average of 

0.58 standard deviations.  Thus, obtaining a valid score requires both a well-developed test and 

an examinee who is willing to demonstrate what he knows and can do. 

In a number of measurement settings, the issue of examinee motivation is usually not of 

great concern to test givers.  It is reasonable in these contexts to assume that examinees are 

highly motivated to perform well because a high test score will help them attain something they 

desire, such as a course grade, graduation, scholarship, certification, or licensure.  That is, 

examinees perceive meaningful personal consequences associated with their test performance.  

Moreover, if an unmotivated examinee chooses to behave non-effortfully, it is not viewed as the 

responsibility of the test giver, whose primary concern is developing and administering a valid 

test (i.e., one that is capable of obtaining a valid score). 

There are many assessment programs, however, in which tests are administered to 

examinees who perceive few, if any, consequences associated with their performance.  This type 

of low-stakes assessment (from the examinee’s perspective) usually occurs in educational 

settings.  For example, in the U.S. National Assessment of Educational Progress, students are 



Running Head: ADAPTIVE TESTING AND UNMOTIVATED EXAMINEES 4 
 

asked to take an assessment that has no bearing on their school grades, and for which they do not 

receive a score.  In the absence of personal consequences, test-taking motivation is driven by 

internal examinee factors such as competitiveness or academic citizenship (Wise & Smith, 

2011), which makes it difficult to assess how motivated a particular examinee is during a low-

stakes test administration.  Hence, in low-stakes testing contexts, motivation is far less certain 

and becomes a serious threat to the validity of test scores.  Because of this validity threat, 

ensuring that examinees give their best effort becomes an additional responsibility of the test 

giver.   

One of the unknowns with any low-stakes assessment is the percentage of unmotivated 

examinees.  Estimation of this percentage is complicated, however, by the fact that there are 

varying degrees of motivation that an examinee might experience, and any classification scheme 

for identifying examinees whose test-taking behavior should be labeled “unmotivated” are 

necessarily based on arbitrary criteria.  Nevertheless, if common criteria are applied across 

studies, some sense of the prevalence of unmotivated test-taking behavior might be gained.   

A number of recent studies have used response time effort (RTE) index introduced by 

Wise and Kong (2005) as a criterion for classifying a test event as unmotivated.  Studies using 

RTE, which is based on the proportion of rapid guessing behavior exhibited by examinees, have 

found considerable variation in unmotivated behavior.  In K-12 settings, Wise, Kingsbury, 

Thomason, and Kong (2004) found 1% of students in grades 6-10 to be unmotivated when a .90 

RTE value was used.  In contrast, Wise, Ma, Kingsbury, and Hauser (2009), using a more 

stringent .85 RTE value, found the percentages of unmotivated examinees to be higher—ranging  

from 1% (in grade 3) to 7% (in grade 9).   
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In higher education settings, unmotivated test taking on low-stakes tests has generally 

been more prevalent than that found in K-12 settings.  Based on an RTE value of .90, Wise and 

Kong (2005) identified 7% of their examinees as unmotivated, Wise and DeMars (2010) 

identified 11%, and Swerdzewski, Harmes, and Finney (2011) identified 26%.  Using an RTE 

value of .87 for a series of assessments over the course of a university semester, DeMars (2007) 

found that the percentages of unmotivated examinees ranged from 1-25%.  The sizable variation 

in the percentages of unmotivated students across these studies reflects the diverse impact of test 

characteristics, examinee characteristics, and contextual factors on the likelihood that a particular 

examinee will respond effortfully to a particular test. 

Thus, examinee motivation represents a potentially serious threat to the validity of test 

scores.  This problem is a distinctive aspect of educational measurement that complicates the 

science of measuring cognitive proficiency.  Measurement in other fields, in contrast, rarely 

requires practitioners to be concerned about the motivation levels of their objects of 

measurement.  As Cronbach (1960) noted over 50 years ago: 

In making a physical measurement—for instance, weighing a truckload of wheat—there 

is no problem of motivation.  Even in weighing a person, when we put him on the scale 

we get a rather good measure no matter how he feels about the operation.  But in a 

psychological test the subject must place himself on the scale, and unless he cares about 

the result he cannot be measured. (p. 52) 

Effectively addressing the validity threat posed by examinee motivation involves 

pursuing two related goals.  The first is to administer tests in a way that promotes examinee 

engagement and effort.  The second is to detect instances in which examinees did not give good 

effort to their tests.  These two goals are part of a general approach to low-stakes measurement 
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that recognizes that (a) we can enhance examinee motivation through our choices of the testing 

methods we adopt and (b) despite our efforts, there will always be some unmotivated examinees 

and we need to be able to identify them.  

This paper is an integrative review of the role that a computerized adaptive test (CAT) 

can play in addressing these two goals.  First, the issue of whether a CAT is more motivating is 

explored based on a review of relevant research. Next, the identification of non-effortful test 

taking is examined and a unique advantage of a CAT is illustrated using data from a widely used 

CAT program administered to U.S. school children.  Finally, the promise of future generations of 

adaptive tests to enhance examinee motivation in low-stakes settings is discussed, drawing on the 

relevant research literature.  

Are CATs More Motivating Than Conventional Tests? 

 It has been frequently claimed that because CATs administer items that are matched to an 

examinee’s proficiency level, they are more motivating than conventional tests.  The rationale 

for this claim is that lower proficiency examinees taking a CAT will not become frustrated or 

discouraged by items that are too difficult, while higher proficiency examinees will not be bored 

by items that are too easy.  Thus, the exclusion of frustrating or boring items is expected to help 

maintain examinee motivation during a test event. 

What is the evidence for this claim?  The issue of whether a CAT is more motivating can 

be considered relative to two indicators.  First, examinees might report that they perceived a 

CAT to be more motivating than a conventional test.  Second, the relationship between 

motivation and test performance would suggest that if a CAT is more motivating, it should yield 

higher test performance relative to that yielded by a conventional test.  While the second 

indicator is more stringent, if examinees reported higher motivation without accompanying 
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evidence of improved test performance, one might question the practical impact of higher 

reported motivation. 

 There is indirect support in the research literature on student motivation for the claim of 

increased motivation.   This body of research has consistently found that the most intrinsically 

motivating tasks are those that individuals find moderately challenging (Pintrich & Schunk, 

2002, Chapter 6).  Additional support comes from research on a special type of computer-based 

test (CBT) call a self-adapted test.  In a self-adapted test, before each item is administered, the 

examinee is allowed to choose its difficulty level from a set of discrete (usually 5-8) difficulty 

strata.  Wise, Plake, Johnson, & Roos (1992) compared self-adapted tests and CATs, finding that 

examinees who were assigned to take a self-adapted test tended to choose difficulty levels that 

were similar to those they would have received on a CAT.  That is, when they were given 

freedom to choose whichever difficulty levels they wished, most examinees chose levels whose 

items were about as difficult as those that would have been selected by a CAT algorithm.  This 

finding suggests that the items administered by a CAT (i.e., those that are moderately 

challenging) are motivationally congruent with the difficulty levels that would be self-selected 

by examinees.  In this way, the findings with self-adapted tests are consistent with research on 

intrinsic motivation. 

Effects on Self-Reported Motivation 

 Several research studies have investigated the effects of CAT on self-reported motivation.  

Betz and Weiss (1976a) found that low-ability college-level examinees reported significantly 

higher levels of motivation on a stradaptive test (an early type of CAT) than on a paper-and-

pencil test (PPT), while the reported motivation of high-ability examinees did not differ by test 

mode.  They concluded that “the use of adaptive tests appears to result in comparable levels of 
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motivation in examinees differing in ability level” (p. 31).  Pine, Church, Gialluca, and Weiss 

(1979) administered CATs and PPTs to a group of high-school students, finding higher mean 

levels of motivation reported on the CAT.  Moreover, a stronger motivation effect was found for 

African-American students, leading the authors to conclude “it may be possible to obtain more 

comparable motivational states across racial groups using computer-administered tests” (p. 34).  

Thus, the two earliest studies suggest that a CAT may have the effect of creating a more 

homogeneous motivational environment across examinees, much as it yields proficiency 

estimates that are more homogeneous in precision.  The only other study found on self-reported 

motivation (Arvey, Strickland, Drauden, & Martin, 1990) compared CAT and PPT versions of 

the Armed Services Vocational Aptitude Battery (ASVAB) that were administered to a sample 

of military recruits.  They found higher levels of reported motivation on the CAT. 

 Thus, examinees across several different types of tests and examinee populations have 

reported that they found CAT to be more motivating.  Nevertheless, one should be cautious in 

generalizing these findings.  All three studies were conducted at a time when adaptive testing 

was a novel type of test, and it is likely that most, if not all, of the examinees were experiencing 

a CAT for the first time.  This leads to questions about the degree to which the higher motivation 

could be attributable to a novelty effect, and the degree to which the motivational benefits would 

persist once examinees became more experienced with CAT remains unclear. 

Effects on Test Performance 

 Additional evidence of a CAT motivation effect would be provided by empirical studies 

showing that test performance on a CAT was higher than to that yielded by a conventional test 

from the same measurement context (e.g., same measured construct, examinee population, etc.).  

The results from five meta-analyses comparing CBTs and PPTs, which are described below, are 
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informative to this question.  Note, however, that although these meta-analyses focused on score 

comparability, their results provide information about the magnitude of a CAT motivation effect 

(which would actually represent evidence of non-comparability).   

Because the results of the five meta-analyses were not completely consistent, it is helpful 

in comparing them to note that each examined a standardized mean difference effect size (ES) 

computed as (MeanCBT – MeanPPT)/SDPooled.  Positive ESs were consistent with a motivation 

effect, as they indicate that the higher mean occurred with the CBT. Negative ESs indicated that 

the PPT mean was higher. 

 Bergstrom’s (1992) meta-analysis compared CATs and PPTs, synthesizing 20 ESs from 

eight research reports.  The examinees in 12 of the ESs were adults, while the remaining 8 ESs 

were based on data from K-12 students.  After deleting 5 ESs to attain a homogeneous set, 

Bergstrom reported a negligible mean ES of -.002.   

Mead and Drasgow’s (1993) meta-analysis examined 159 ESs comparing CBT and PPT 

performance on tests measuring the cognitive ability of young adults and adults. Of the 114 

comparison studies they synthesized, 67 (59%) were CATs. They reported a mean ES for power 

tests of -0.03, which indicated that performance on the CBTs were slightly lower.  Mead and 

Drasgow did not indicate whether adaptivity (i.e., whether the test was adaptive or non-adaptive) 

was a significant moderator of this mean difference ES.  They did, however, report that 

adaptivity was not a significant moderator of the degree of correlation between CBTs and PPTs.  

Thus, the results from the first two meta-analyses provide little indication of a motivation benefit 

associated with a CAT. 

 The results from the other three meta-analyses suggest a more complicated story.  Kim 

(1999) synthesized 226 ESs comparing CBTs and PPTs across a variety of samples and tests, 
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reporting a mean ES of +.019.  Kim found that the set of effect sizes was heterogeneous, and that 

adaptivity was a significant moderator variable (indicating that there were significant differences 

in the CBT-PPT ESs for adaptive and non-adaptive CBTs).  Specifically, CATs showed an ES of 

-0.15 while the ES for non-adaptive CBTs was +0.10, suggesting that adaptivity had a negative 

effect on test performance.  Wang, Jiao, Young, Brooks, and Olson (2007) noted, however, that 

K-12 students represented only 4% of the samples in the Kim (1999) study.  They conducted a 

meta-analysis focused on comparisons between CBTs and PPTs for mathematics tests 

administered to K-12 students.  This analysis showed that, for the 36 ESs selected for analysis, 

the overall mean ES was -0.06.  Adaptivity was found to be a significant moderator, however, 

with the ESs for non-adaptive CBTs and CATs being -0.09 and 0.08, respectively.  This 

indicated that adaptivity had a positive effect.  The Wang et al. meta-analysis was repeated for 

K-12 tests in reading (Wang, Jiao, Young, Brooks, & Olson, 2008), with similar findings.  The 

overall ES in reading was -0.004, adaptivity was again found to be a significant moderator, and 

the respective ESs for non-adaptive CBTs and CATs were -0.01 and 0.05.  Thus, the Wang et al. 

meta-analyses both provided evidence (albeit weak) consistent with the presence of a CAT 

motivation effect. 

 The mixed findings from five meta-analyses make it difficult to draw strong conclusions 

about the presence of motivational benefits from CATs.  The two analyses focused on K-12 

students provide the most promising evidence. It should be noted, however, that PPTs and CATs 

differ in multiple ways that might distort test performance.  For example, CATs generally do not 

permit examinees to review (and possibly change) their answers, which could negatively affect 

performance.  Additionally, there is some evidence that CATs can make examinees more 

anxious (Betz & Weiss, 1974a), which could also negatively affect performance.  This suggests 
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that, relative to PPTs, CATs can affect examinees in multiple ways—some of which are 

performance enhancing and some of which are performance diminishing.  Empirical 

comparisons of test performance between CATs and PPTs reflect the net effect of all of these 

influences, which makes it difficult to isolate the magnitude of a motivational effect.  

Nevertheless, because mean ESs found in the meta-analyses were consistently small in 

magnitude, it is probably safe to conclude that any motivational impact of a CAT on test 

performance is modest.  

 It is important to note that, whatever its magnitude, any potential motivational effect of a 

CAT on test performance is unlikely to be realized in operational use.  This is because most 

CATs have been introduced in measurement contexts in which PPTs are already being used.  

Whenever both CAT and PPT versions of a test are administered, establishing the comparability 

of scores from the two versions is an important concern.  For example, Guideline 22.1of the 

International Guidelines on Computer-Based and Internet Delivered Testing (International Test 

Commission, 2005) states that the scores from computerized and non-computerized versions 

should “produce comparable means and standard deviations or have been appropriately scaled to 

render comparable scores” (p. 11).  In practice, this means that score comparability is often 

attained by equating the CAT scores to the scale established using the PPT.  The implication of 

this is that, to the extent that a CAT increases motivation enough to improve test performance, 

that improvement will be subsequently be equated away.  In essence, when CAT and PPT 

versions of a test are being used, the issue of whether the CAT possesses any motivational 

advantage is likely to be rendered moot by comparability concerns. 
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Conclusion 

 The claim that CATs are more motivating than conventional tests is frequently cited as an 

advantage of adaptive testing.  The limited research on examinee self-reported motivation 

provides some support this claim.  Moreover, the claim seems especially true for low-proficiency 

examinees, whose personal assessment histories tend to be characterized by test events in which 

the items were far too difficult for them.  Hence, in this sense adaptive testing can be considered 

a more humane form of testing. 

 However, higher reported motivation has not conclusively been shown to be 

accompanied by higher test performance.  There are several potential explanations for this.  First, 

CATs may increase examinee motivation, but not be enough to significantly impact test 

performance.  Second, any positive effects of motivation on test performance may be offset by 

other factors that have negative effects (such as not providing an opportunity to review/change 

answers).  Third, it is probably the case that a CAT motivationally benefits only some 

examinees.  In most measurement contexts, the percentage of examinees that are found to be 

unmotivated is less than 10 percent.  In these situations, a CAT could markedly improve the test 

performance of those examinees without meaningfully increasing overall mean performance.  

Additional research targeted specifically at unmotivated examinees would yield more conclusive 

results about the extent to which increased motivation translates into improved test performance. 

Can Unmotivated Test Taking be More Readily Detected on a CAT? 

 Because it is an internal state, an examinee’s test-taking motivation cannot be directly 

measured.  However, the examinee’s motivational state influences the effort he directs toward his 

test, which is a behavior that can be measured.  This suggests that the amount of effort expended 

during a test might be used as an indicator of an examinee’s motivational state.   
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 It should be noted that non-effortful test-taking behavior does not always indicate a lack 

of motivation.  An examinee who is not feeling well might be highly motivated to do well on the 

test, while feeling too nauseated to give much effort.  Alternatively, an otherwise motivated 

examinee may devote relatively little effort to a particular test item about a topic he has not yet 

had an opportunity to learn.  Nevertheless, examinee effort generally provides a useful way to 

evaluate examinee motivation, and it can help identify instances when effort is so low that a 

score is not a trustworthy indicator of an examinee’s level of proficiency. 

Self-Report Measures 

 There are multiple ways to measure an examinee’s test-taking effort.  The most 

commonly used method is to ask the examinee, after the test has completed, to report his level of 

motivation or effort during the test.  Short self-report instruments using a small number of 

Likert-style items, such as the Student Opinion Scale (Sundre & Moore, 2002) can produce 

reliable scores.  The self-report method has several advantages.  First, it is simple, economical, 

and can be administered in a short period of time (i.e., generally less than 2 minutes).  Second, it 

can be used with both PPTs and CBTs.  Because of its flexible ease of use, the self-report 

method has been the most widely used in research. 

There are several disadvantages, however, to the self-report method.  First, it is mildly 

intrusive, as examinees who have just completed their test are usually ready to focus on 

something other than the test they just took.  Second, it is unclear how truthfully examinees will 

respond about their test-taking effort.  Some examinees who did not give good effort might not 

want to admit it to test givers they respect, or if they fear punishment for reporting lack of effort.  

Alternatively, some examinees are predisposed to attribute failure to lack of effort, and they may 

falsely report low effort if they believed they did not do very well on their test.  Third, self-report 
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measures provide a global assessment of effort, which makes it difficult to study any changes in 

effort that occur during a test event.  

Measures Based on Test-Taking Behaviors 

 In recent years, there has been a growing interest in measuring effort based directly on 

behaviors exhibited by unmotivated examinees during a multiple-choice test event.  There are 

several types of behaviors that might be observed.   First, the examinee might simply omit items 

and not answer them.  Second, he might give answers, but choose them randomly.  Third, he 

might answer very rapidly in an attempt to get the test over with. 

 On a PPT, one can readily identify omitted items from an examinee’s test booklet or 

answer sheet.  In addition, one could compare his test performance to that expected by random 

responding.  Unfortunately, omitted items and/or test performance resembling that from random 

responding might also be exhibited by low proficiency examinees, who would omit or guess at 

items because they did not know the correct answers.  Thus, motivation and proficiency are 

potentially confounded when we try to interpret these types of behaviors with a PPT.  In 

addition, it is virtually impossible with a PPT to identify instances in which an examinee 

answered an item very rapidly.  Hence, when PPTs are used, the three test-taking behaviors that 

could indicate non-effortful test taking either provide ambiguous information or cannot be 

measured at all. 

 A CBT can yield information about both the number of omitted items and test 

performance.  As with a PPT, however, a CBT is vulnerable to the same confounding between 

motivation level and proficiency level.  This complicates interpretations of omitted items or low 

test performance as unambiguous indicators of low effort.  It should be noted, though, that test 
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givers administering a CBT could prevent omitted items by requiring an examinee to answer 

each item before he can move on to the next. 

In contrast to a PPT, a CBT can unobtrusively measure numerous behaviors during a test 

event.  The most important of these is response time, defined as the time elapsed between when 

an item is displayed and when the examinee enters a response.  Item response time, which can 

readily be measured and recorded, can be used to identify rapid guessing, which has been shown 

to be a relatively unambiguous indicator of test-taking effort (Wise & Kong, 2005).  A rapid 

guess is one that occurs much faster than it should take an examinee to read, understand, and 

enter a response.  Such responses get their name because of their characteristic accuracy rates 

that closely resemble those expected by chance under random responding. 

 A CAT, like all CBTs, can measure item response time, which can be used to identify 

rapid guessing, and permits assessment of effort down to individual item level.  Omitted 

responses are typically not allowed on a CAT, because the item selection algorithm requires 

answers from all prior items in order to select subsequent items. A CAT, however, has an 

important advantage over a non-adaptive CBT.  A distinctive feature of a CAT is that it can 

render low accuracy responses relatively unambiguous because it actively avoids administering 

items that are highly difficult for a given examinee.  Assuming that the CAT (and its associated 

item pool) is able to administer items that are well targeted to an examinee’s proficiency level, a 

set of responses with a very low accuracy rate can provide additional evidence of low effort. 

 To illustrate this, consider a hypothetical examinee taking a CAT whose items are 

calibrated using the Rasch model and each multiple-choice item has four response categories. 

Assuming that the CAT is well targeted, a motivated examinee should have a relatively 

consistent probability around .50 of passing items.  An unmotivated examinee who guesses 
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randomly, in contrast, would have a .25 probability of passing items.  The response of the 

examinee to a single item would not provide information sufficient to make a confident decision 

regarding whether the examinee was motivated or not.  Over a set of items, however, one could 

gain confidence regarding whether the response pattern was more characteristic of a motivated 

examinee or an unmotivated one.  For example, suppose that across a given set of ten items 

during a test event, the examinee passed two.  Using the binomial theorem, the probability that a 

motivated examinee passed exactly two items (assuming a .50 probability on each item) would 

be .04.  The probability that an unmotivated examinee passed exactly two items by random 

guessing would be .28.  Hence, the outcome (two correct out of ten) is substantially more likely 

to have occurred if the examinee was unmotivated than if he was motivated.  This is intuitively 

reasonable, because the observation that 20% of the items were passed seems much more likely 

to have come from an examinee who was randomly guessing than one who one who had a 50-50 

chance of passing each item. 

Thus, when a CAT is administered, test givers can potentially use the response times of 

individual items and response accuracy over sets of items to assess examinee effort.  Table 1 

summarizes the sources of effort-related information available under different types of tests.  It is 

seen that CATs provide more information than CBTs, which in turn provide more information 

than PPTs, leading to the conclusion that non-effortful behavior can be most effectively 

identified when adaptive tests are used. 

Effort Flagging of Test Events 

  How effort might be assessed on a CAT can be illustrated using the effort flagging 

criteria described by Wise, Ma, & Theaker (2012).  They applied criteria being studied for use by 

Northwest Evaluation Association with its Measures of Academic Progress (MAP) adaptive 



Running Head: ADAPTIVE TESTING AND UNMOTIVATED EXAMINEES 17 
 

testing system.  MAP is used to measure the academic growth of U.S. primary and secondary 

students in mathematics, reading, language arts, and science.  MAP proficiency estimates are 

expressed as scale scores on a common scale that permits a student’s growth to be assessed over 

time.   

The five effort criteria are based on information from both item response time and 

response accuracy.  If any of the effort flags were triggered for a test event, the score is classified 

as invalid due to low examinee effort.  Two of the criteria are based on examinee behavior over 

the entire test event.  Because examinees often exhibit non-effort during only a portion of a test 

event, however, three additional flagging criteria are based on subsets of the items during the test 

event.  

Rapid guessing is identified based on the conceptualization that each item response can 

be classified as reflecting either rapid-guessing behavior or solution behavior (Schnipke & 

Scrams, 1997, 2002).  This classification is done using pre-established time thresholds for each 

item using the normative threshold method (Wise & Ma, 2012) set at 10 percent.  This means 

that the threshold for an item is set at 10 percent of the average time examinees have historically 

taken to answer the item.  RTE for a test event equals the proportion of the examinee’s responses 

that are solution behaviors (Wise & Kong, 2005).   

The first two effort flagging criteria are based on RTE. The first uses the overall RTE for 

the test event: 

Flag A: If the examinee gave rapid guesses to at least 15% of the items (overall RTE ≤ .85). 

The second flag—designed to detect non-effort during only a portion of the test event—is 

based on rolling subsets of items.  For example, for subsets of size 10, one would consider items 
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1-10, then 2-11, then 3-12, and so on, until the end of the test.  Based on rolling subsets of size 

10, an additional RTE-based flag was developed for evaluating low effort on a more local level: 

Flag B: If the examinee exhibited low RTE (local RTE ≤ .70) on at least 20% of the rolling subsets. 

The next two flagging criteria are based on response accuracy.  Low-accuracy responses 

should be evaluated carefully to make sure that they were not due to the examinee receiving 

items that were much too difficult for him.  It is important that the CAT item pool and selection 

algorithm be capable of administering items that are well targeted to an examinee’s proficiency 

level throughout the test event.  To accomplish this, a pool adequacy requirement is imposed 

specifying that low response accuracy will only be considered for CAT test events in which, at 

least 60% of the time, the examinee received an item whose difficulty was no more than three 

scale score points away from the examinee’s momentary proficiency estimate
1
.  This led to the 

development of two additional flags related to response accuracy: 

Flag C: If the examinee passed fewer than 30% of the items (overall accuracy ≤ .30) and at least 60% of 

all of the administered items were within three scale score points of the examinee’s momentary 

proficiency estimate.  

Flag D: If the examinee exhibited low accuracy (local accuracy ≤ .20) on at least 20% of the rolling 

subsets and at least 60% of all of the administered items were within three scale score points of the 

examinee’s momentary proficiency estimate. 

 The final effort flag is based on the joint occurrence of rapid guessing and low accuracy 

on any of the rolling subsets of items: 

                                                           
1
  Standard errors of examinee scores in reading are typically about 3.2 scale score points. 
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Flag E: If the examinee passed no more than two items (local accuracy ≤ .20) and gave three or more 

rapid guesses (local RTE ≤ .70) on any 10-item subset, and at least 60% of all of the administered 

items were within three scale score points of the examinee’s momentary proficiency estimate. 

 The five flagging criteria were applied to a set of MAP test events.  Testing records in 

reading from the fall and spring testing terms of the 2010-2011 academic year in a single U.S. 

state were retrieved from the Northwest Evaluation Association’s Growth Research Database.  

The test records were limited to 287,690 students in grades 3-9 who were tested in both testing 

terms as part of their district sponsored testing programs. 

 The numbers of effort flags triggered during the fall test administrations are shown in 

Table 2.  Over 31,000 (11%) of the test events were classified as invalid due to low effort.  

Nearly twice as many test events triggered rapid guessing flags as accuracy flags or joint rapid 

guessing and accuracy flags.  The total number of flags triggered exceeded 47,000, indicating 

that it was common for multiple flags to be triggered by a test event. 

Table 3 shows that when only a single type of flag was triggered, the type of flag varied.  

Rapid guessing flags occurred most often, followed by accuracy flags, with joint flags occurring 

relatively rarely.  Particularly noteworthy is the finding that nearly a quarter of the test events 

triggering flags (7,622 out of 31,734) were identified only through accuracy flags.  This 

underscores the unique advantage of CATs in identifying non-effortful behavior that is 

characterized by low accuracy even when rapid guessing does not occur.   

 Evidence for the validity of the flags can be found in the correlation of test scores with 

other variables if the scores from flagged test events are removed from the sample.  The 

correlation between the entire sample’s fall and spring RIT scores was .82.  If examinees with 

flagged test events in either testing session are removed from the data, the correlation increased 
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to .86 even though the variances of both the fall and spring scores were reduced.  These results 

are consistent with the idea that deleting the data from examinees exhibiting non-effortful 

behavior has the effect of improving the validity of a set of test scores by removing construct-

irrelevant variance (Haladyna & Downing, 2004) from the data. 

How Can CATs Be Modified to Better Address Examinee Motivation? 

 It is useful for test givers to have methods of detecting when examinees have exhibited 

low examinee effort, because they help identify scores with low individual score validity (Wise, 

Kingsbury, Hauser, & Ma, 2012).  These methods, however, are designed to be applied after the 

test event has occurred.  Consideration might also be given to what could be done during a test 

event to promote or maintain motivation.  That is, to what extent can non-effortful behavior be 

reduced by the way the test event is conducted?  The possibilities of what might be done range 

from relatively minor changes to the basic CAT algorithm and features to more fundamental 

changes in how we conceive of adaptive testing.  Such changes require us to think beyond the 

traditional CAT algorithm and to consider testing methods that can have motivational benefits 

even in the absence of psychometric benefits.   

 One potential change in the CAT algorithm that has been investigated is the difficulty of 

the items that are administered to an examinee.  Item selection in a CAT is typically driven 

largely by an item response theory-based maximum information criterion, which is intended to 

maximize the efficiency of test events and yield scores with maximal precision.  This results in 

test events in which examinees pass their items about 50% of the time.  Some researchers have 

argued that this success rate is too low and threatens the motivation of examinees who are used 

to passing a much higher percentage of items when they take tests.   
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Studies of CATs targeted at higher success rates (usually 60%, 70%, and 80%) have 

found that examinees do report higher levels of motivation compared to that from a CAT using a 

50% success rate, but without significant motivational benefits in terms of higher test 

performance (Bergstrom, Lunz, & Gershon, 1992; Häusler & Sommer, 2008; Lunz & Bergstrom, 

1994; Tonidandel, Quiñones, & Adams, 2002).  In addition, these studies have demonstrated that 

CATs using higher success rates yield proficiency estimates with higher standard errors than 

those from traditional 50% CATs.  Thus, there is a tradeoff between motivation and precision; 

examinees tend to find higher success rates somewhat more motivating, but at the cost of slightly 

less precise proficiency estimates.  Because higher motivation has not been found to result in 

higher performance, however, precision has been a priority for test givers and few, if any, 

operational CATs use a higher success rate.  Nevertheless, despite arguments that measurement 

efficiency is the primary reason for a CAT (Wainer, 1993), success rate should be recognized a 

factor that could be potentially be manipulated to enhance examinee motivation. 

 An additional feature that could potentially be provided to examinees taking a CBT is 

item feedback regarding the correctness of their responses.  The rationale for providing this 

feature is that, by providing item feedback, examinees’ engagement will be maintained because 

they will be motivated to see if they answered items correctly or not.  On a high-stakes fixed-

length test, providing item feedback would naturally raise questions about the validity threat 

posed by exposing item content.  But with a CAT (using large item pools) in a low-stakes testing 

context (in which test-taking motivation is apt to be of greatest concern), providing item 

feedback would likely raise fewer item exposure concerns. 

 The research findings on the relationship between item feedback and motivation are 

mixed.  Betz and Weiss (1976a) found that low-ability examinees reported lower motivation 
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when item feedback was provided, while high-ability examinees reported higher motivation.  

Similarly, Betz and Weiss (1976b) found that item feedback resulted in higher test performance 

for the high-ability group, but lower performance for the low-ability group. Pine et al. (1979) 

found that African-American examinees reported more negative attitudes toward item review 

and indicated that item review made them nervous and interfered with their concentration.  These 

results suggest that the impact of item feedback varies across examinees such that some may find 

it motivating while others may find it anxiety producing or distracting.  The mixed impact of 

item review on motivation is similar to the mixed impact of item feedback on test performance 

[see Vispoel (1998) for a review of this research]. Thus, test givers trying to improve motivation 

should use item feedback cautiously, because it may induce other types of construct-irrelevant 

factors such as anxiety. 

Expanded Types of Adaptive Tests 

 Standardization is one of the foundational concepts of modern measurement.  It embodies 

the “principle that valid interpretation of test scores relies on the expectation that every test 

administration has been conducted under the same, standardized conditions of measurement” 

(McCallin, 2006, p. 634).  The primary goal of standardization is to reduce the impact of group-

level construct-irrelevant variance on test scores.  For example, use of a standard time limit with 

a test ensures that differential time limits do not introduce construct-irrelevant variance that can 

compromise interpretations of test scores. 

  Some construct-irrelevant factors, however, do not affect all of the examinees in a group.  

Person-specific construct-irrelevant variance is systematic error that can affect an individual 

examinee’s score (Haladyna & Downing, 2004).  Test-taking motivation is an example of 
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person-specific construct-irrelevant variance that negatively affects individual examinee scores, 

and thus threatens individual score validity.   

Person-specific construct-irrelevant variance due to internal factors such as motivation 

will generally not be reduced through test standardization.  Instead, it might be effectively 

managed through an individualization of the test administration.  Specifically, a test might adapt 

to the presence of a construct-irrelevant factor during a particular examinee’s test event by 

altering the test administration in a way that might mitigate the effect of the validity threat.  

Cronbach (1960) considered the management of construct-irrelevant factors a particular type of 

standardization: 

We may better understand the problem of framing directions and arousing motivation if 

we realize that the psychometric tester tries to standardize the behavior of the subject, as 

well as the test stimuli.  Even though he is measuring individual differences, his 

procedures are designed to eliminate individual differences—to eliminate, that is, 

variation in every characteristic save the one that his test is supposed to measure. (p. 59-

60)  

A good example of individualization relevant to motivation is the effort-monitoring CBT 

introduced by Wise, Bhola, and Yang (2006).  In this type of test, the computer algorithm 

monitors item response times.  If it detects that an examinee has begun to exhibit rapid-guessing 

behavior, a message is displayed to the examinee noting that a decrease in effort has been 

detected and encouraging the examinee to increase his or her effort.  Wise et al. found that those 

examinees receiving messages exhibited increased levels of motivation as indicated by longer 

response times and higher success rates on subsequent items).  A replication of the Wise et al. 

study by Kong, Wise, Harmes, & Yang (2006) found that examinees receiving effort messages 
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performed significantly better on subsequent items than examinees who deserved, but did not 

receive messages. 

 In an effort-monitoring CBT, messages are displayed only to those whose test-taking 

behavior warrants them.  The remaining examinees do not receive messages.  In this way, the 

effort-monitoring CBT is less standardized than a conventional PPT or CBT because its 

intervention is conditional on the behavior of the examinee
2
.  It focuses on maximizing the 

validity of individual test scores by identifying and reducing construct-irrelevant factors that 

affect particular examinees rather than maintaining a standard test administration for all 

examinees.  Such a strategy is designed to maximize the collective individual score validity of 

the scores from a group of examinees. 

 In what other ways might a CAT adapt to unmotivated examinees other than through 

manipulation of item difficulty?  One answer is that future CATs might select or present items 

based on a pre-knowledge of an examinee’s interests (which would presumably be more 

motivating).  This would require items that could be framed within a variety of contexts.  If it 

were known in advance that a particular examinee liked fishing, for example, a particular 

mathematics item might be framed in the context of a fishing example or scenario.  If a different 

examinee liked sewing, the same item might be presented in a sewing context.  The challenge to 

the test giver would be to develop items that could be plausibly re-framed according to the 

examinee’s interests (the motivational need) while maintaining reasonably consistent difficulty 

levels (the psychometric need).  This idea is speculative, however, and research is needed to 

understand its feasibility. 

  

                                                           
2
 A traditional CAT can also be considered individualized relative to a conventional test in that the difficulty levels 

of the items administered depend on the correctness of an examinee’s responses to earlier items.  The result is that 

each examinee receives a test whose item difficulty levels are adapted to his or her level of proficiency. 
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Conclusions 

 Wainer (1993) cautioned that “if we are to improve the practice of testing, we must allow 

later generations of tests to be better than earlier ones” (p. 19).  CATs represent a major 

advancement in how efficiently we can gather information about examinee proficiency.  While 

testing efficiency has been a primary reason for implementing CAT programs in education, there 

is evidence that the targeting of item difficulty to examinee proficiency brings with it modest 

motivational benefits that can improve individual score validity.  It is important, however, that 

these motivational benefits not be equated away when CATs are used in conjunction with 

conventional tests (i.e., PPTs or non-adaptive CBTs).  Understanding that CATs can improve 

score validity by reducing construct-irrelevant variance in ways that conventional tests cannot 

may lead to recognition that test performance differences between testing modes might be 

viewed as a positive result rather than a threat to comparability that must be corrected for. 

 Unmotivated examinees represent an individual score validity threat that is likely to be 

present whenever low-stakes tests are used in education.  Without personal consequences 

associated with test performance, not all examinees will be motivated to give their best effort.  It 

is therefore important that we have effective methods for identifying instances of low examinee 

effort, because they will indicate test events whose scores have low individual score validity.  It 

has been shown in this paper that CATs have clear advantages over conventional tests in 

identifying such instances—a finding that enhances the value of CATs to those administering 

low-stakes tests. 

 A CAT exemplifies the psychometric advantages that can be obtained when a test is less 

standardized than its conventional counterpart. Additional validity-related advantages might be 

found in a new generation of CATs that can adapt to the motivational/affective states of 
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examinees.  Developments in this direction will require a broader perspective on what it means 

for a test to adapt.  It will also require a consideration of the potential validity gains that might be 

obtained by adopting individualized test practices that are directed toward reducing the impact of 

construct-irrelevant variance on test scores. 

 In low-stakes testing programs, test givers have the dual responsibilities of providing a 

high-quality test that is capable to yielding valid scores and motivating examinees to give good 

effort to that test.  This paper has shown that, by its unique nature, a CAT encourages examinees 

to maintain engagement during a test while allowing us to better detect instances when 

disengagement has occurred. 
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Table 1 

Availability of Indicators of Effort Under Different Test Types 

 Test Type 

Effort Indicator PPT Non-Adaptive CBT CAT 

Self-report Yes Yes Yes 

Response Time No Yes Yes 

Response Accuracy No No Yes 

 

 

 

 

 

Table 2 

Numbers of Test Events with Different Types of Effort Flags Triggered 

Effort Flag Type N % of Total Sample 

 Zero Flags 255,956 89.0 

At Least One Flag 31,734 11.0 

    Rapid Guessing Flag (Overall or Local) 22,398 7.8 

    Accuracy Flag (Overall or Local)  11,730 4.1 

    Joint Rapid Guessing and Accuracy Flag 13,330 4.6 

 

 

 

 

 

Table 3 

Numbers of Test Events in Which Only A Single Type of Flag was Triggered 

Effort Flag Type N % of Total Sample 

Rapid Guessing Flag (Overall or Local) 10,584 3.7 

Accuracy Flag (Overall or Local)  7,622 2.6 

Joint Rapid Guessing and Accuracy Flag 1,361 0.5 
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Abstract 

Whenever the purpose of measurement is to inform an inference about an individual student, 

it is important that we be able to trust that the student’s test score accurately reflects what 

that student knows and can do.  Such trust comes from the dual requirements that (a) we are 

using a competently developed test that is capable of providing valid scores from the target 

population of students and (b) that the student’s test event was not influenced by construct-

irrelevant factors that could meaningfully distort his or her score.  Although traditional 

validity evidence is useful for informing the viability of the first requirement, it provides 

little information regarding the second.  In this paper we propose a process for collecting 

evidence of individual score validity, which complements traditional validity evidence in 

assessing the trustworthiness of individual test scores.   
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How Do I Know That This Score is Valid?  The Case 

For Assessing Individual Score Validity 

 Whenever we administer a test to measure a student’s level of proficiency in some 

educational domain, our primary goal is to obtain a valid score for that student.  That is, we 

seek information that we can use to help us make inferences regarding what that particular 

student knows and can do.  Because of the pervasive and central role that test scores play in a 

variety of educational inferences about students (e.g., academic progress, graduation, 

entrance into higher education institutions), it is important that we have methods for 

evaluating the trustworthiness of such information.  This implies that whenever our unit of 

inference is the individual student, any inquiry regarding the trustworthiness of test data must 

at some point focus on the individual student scores.    

 This idea of trustworthiness of information from test scores suggests the fundamental 

measurement concept of test score validity.   Although test score validity has engendered 

much debate and research for many decades (Cronbach, 1971; Kane, 2006; Messick, 1989), 

there is general consensus regarding the types of evidence that are typically considered a 

valuable part of a validity argument.  It is our view, however, that although the types of 

evidence that are traditionally collected to validate score-based inferences are highly 

important, they are not sufficient to answer the question of whether a particular test score is 

valid.  Our purposes in this paper are to (a) examine the limitations of traditional validation 

methods, (b) propose a practical framework for collecting additional evidence to support the 

validation of individual test scores, (c) provide examples of the proposed validation 

framework, and (d) discuss additional directions for research. 
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 To illustrate our perspective, consider two different testing scenarios.  The first is an 

instance of an individually administered achievement or aptitude test, such as that routinely 

administered by a school psychologist.  In this scenario, suppose that the test administrator is 

using a test for which a substantial amount of traditional validity evidence has been accrued.  

The set of items on the test is well aligned to the content domain that the test was designed to 

measure and, collectively, the items provide a good representation of the content domain.  In 

addition, previous research has supported the internal structure of the set of test items, and 

scores from the test have been found to demonstrate good convergent and discriminant 

validity evidence.   

But despite the varied and substantial amount of evidence that is available supporting 

the validity of the test’s use, when the school psychologist is testing a particular student, she 

attends closely to the student’s behavior.  She has been trained to continually monitor the test 

administration and either terminate the test or take some sort of corrective action if she feels 

that the testing session is unlikely to yield a test score that validly represents what the student 

knows and can do.  A variety of circumstances might trigger such a response.  The student 

might appear disengaged and unmotivated during the test, or might appear fatigued or ill.  

Being tested might make the student so anxious that test performance is likely to be 

adversely affected.  The testing room might unexpectedly become very warm or noisy during 

the session, or there might be the interruption of a fire drill that disrupts the student’s 

concentration.  The administrator might realize during the test session that some type of 

testing accommodation should have been provided to this student, but had been overlooked.  

In essence, the test administrator has a professional responsibility to look for evidence that 



Running Head: INDIVIDUAL SCORE VALIDITY   5 

that student’s test performance is not a trustworthy indicator of the student’s proficiency 

level, and to consider invalidating that score if the evidence warrants it. 

There are two related points to note regarding this scenario.  First, the events and 

behaviors that the test administrator is watching for are all construct-irrelevant factors 

(Messick, 1984) that threaten the validity of test score interpretations.  The presence and 

impact of these construct-irrelevant factors commonly varies across students, which has the 

effect of increasing test score variance.  Haladyna and Downing (2004) generically referred 

to these types of validity threats as construct-irrelevant variance (CIV), and provide an 

excellent discussion of the various forms that they might take in high-stakes testing.  In the 

present scenario, however, when monitoring the test session the administrator is focused 

primarily on student-related CIV.  Second, traditional validity research is of limited use in 

answering the specific question of whether or not a particular test score is valid.  For 

example, although research may have indicated that being tested can produce high levels of 

test anxiety in some students, the observation and judgment of the test administrator is 

needed to determine whether test anxiety is threatening the validity of the score from this 

particular student during this particular test event.   

Contrast the individual testing scenario with the more familiar scenario of group-

administered achievement testing, in which a common test is simultaneously administered to 

group of students.  Group testing emerged nearly a century ago out of the need to efficiently 

assess the mental abilities of a large number of military recruits during World War I 

(Anastasi, 1988).  Soon thereafter, this form of testing became the dominant method for 

educational testing in the United States.  
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An important aspect of group-administered testing is that only a limited number of 

proctors are typically used.  Instead of the one-to-one relationship between the administrator 

and the student that characterizes individual testing, there is a one-to-many relationship in 

group testing, which constrains the extent to which proctors can closely monitor the test-

taking behavior of individual students.  Because it is unrealistic to expect proctors to closely 

monitor the test events for all individual students, proctor responsibilities typically do not 

extend beyond distributing test materials, ensuring that the test is administered in the 

prescribed standardized manner, and deterring and/or detecting cheating behavior by 

students. 

Thus, there is a key distinction between the two types of test events.  Under 

individual testing, the person giving the test has a responsibility to monitor the test session 

and invalidate test scores if there is sufficient evidence of CIV.  In contrast, under group 

testing, test proctors are generally not assigned (and, more importantly, could not realistically 

fulfill) such responsibility.  This reduced capacity to assess the validity of individual test 

scores represents a crucial validity-relevant cost associated with the advent of group testing. 

The Limitations of Traditional Validity Evidence 

A number of definitions of validity have been proposed, but they generally refer to 

test scores in the plural, rather than singular, sense.  For example, the Standards for 

Educational and Psychological Testing (AERA, APA, & NCME, 1999) defines validity as, 

“the degree to which evidence and theory support the interpretations of test scores entailed by 

proposed uses of tests” (p. 9).  The validity of individual test scores is generally not 

emphasized in these definitions.   
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Consistent with a chosen validity definition, measurement practitioners seek to 

develop an argument for score validity.  The evidence underlying this argument can come in 

a variety of forms.  First, evidence can be collected relevant to the content of the test items.  

This type of evidence typically consists of expert judgments about the degree to which a set 

of items represents the target construct or is aligned with the content domain.  Second, 

whenever there is an identifiable (and measurable) criterion variable that test scores are 

expected to predict, evidence can be collected regarding the correlation between test scores 

and that criterion.  A third type of evidence concerns the theory-based expectations regarding 

the test scores.  This type of evidence includes (a) examinations of the internal structure of 

the test, (b) the pattern of correlations between the test scores and measures of other 

constructs, and (c) the degree to which groups of students that theoretically should differ on 

the target construct do, in fact, exhibit mean score differences. 

What is deficient about this traditional approach to test score validation?  Its primary 

limitation is that the strategies used to collect validity evidence typically provide little, if any, 

information concerning validity threats posed by the presence of student-related CIV.  To 

illustrate this, consider a group of students taking a standardized achievement test in math.  If 

a particular student is not motivated to do his best, and consequently devotes little effort 

toward the test, the resulting test score would be invalid if it markedly underestimates his 

actual level of math proficiency.  Could traditional validity evidence be useful in identifying 

this source of score invalidity?  Content-related evidence would not be helpful because it 

looks only at the item content, and not at how students behave when administered the items.  

Criterion-related evidence would not be sensitive to the presence of unmotivated students 

unless there was something about the test that routinely elicited low effort from enough 



Running Head: INDIVIDUAL SCORE VALIDITY   8 

students that the correlation was substantially affected.  In such a case, the correlation 

between the criterion and test score would be low, which would suggest that the test could 

not be trusted to yield valid scores.  Note, however, that (a) the correlation would be of 

virtually no use in identifying exactly which students exhibited did not good effort and (b) 

the correlation could be quite high if the proportion of unmotivated students was low.  

Hence, at best, correlations provide limited guidance to us when construct-irrelevant factors 

affect some students, but not others.  Similarly, construct-related validity evidence, which 

relies on correlations and mean difference effect sizes, would also be of limited use in 

identifying infrequent instances of score invalidity due to CIV. 

It should be emphasized that we are not claiming that traditional validity evidence is 

not useful.  On the contrary, traditional evidence is essential for any argument supporting 

general inferences made regarding the scores from a test.  Rather, we are asserting that 

traditional evidence, as important as it is, is insufficient to support the validity of individual 

test scores.  This underscores the need for additional validity information that is specifically 

focused on individual test events.  In essence, we are proposing that methods be explicitly 

employed for detecting the presence of “alternative explanations” (Mislevy, 2009, p. 97) that 

can weaken the inferences in an assessment use argument. 

Individual Score Validity 

When we administer a test, we have only a limited amount of control over the factors 

that affect score validity.  This idea might be best understood if a test event is conceptualized 

as a series of encounters between a student and a test item within a particular testing context.  

Although we have a great deal of control over the presentation of the test item, we have far 

less control over the student, who might be affected by a variety of factors such as lack of 
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motivation, test anxiety, illness, fatigue, or a willingness to cheat to attain a high score.  

Moreover, even though we try to standardize test administration as much as possible, in 

practice the testing context is usually only partially under our control because there is 

inevitably some variability in the testing context that can exacerbate the impact of student-

related factors.  For example, students tested just before lunch might be less motivated than 

those tested at other times of the day, a particularly stern-looking test proctor might elicit 

greater degrees of test anxiety than other proctors, or the layout of a particular testing room 

might be more tempting than other room layouts to students inclined to cheat.   

In this paper, we define individual score validity (ISV) as the degree to which an 

individual test score is free from sources of CIV.  As such, it serves as a complement to 

traditional validity evidence.  That is, traditional validity evidence pertains to the adequacy of 

a test’s items for a specified population of students and the general conditions under which 

the items are administered and scored.  ISV focuses on additional factors that may threaten 

score validity, even when there is clearly adequate traditional validity evidence.  These 

factors pertain predominantly to the less controllable student-related factors described above. 

The current work builds on previous research on the validity of individual scores.  

Kingsbury and Hauser (2007) introduced the term individual validity, which they generally 

referred to as, “the extent to which an individual’s score has utility” (p. 1).  Later, Hauser, 

Kingsbury, and Wise (2008) defined individual validity as, “the process of identifying the 

extent to which a test score for an individual was a reasonable indicator of the individual’s 

current ability on the content of interest” (p. 1-2).  In this paper, we have slightly amended 

the terminology to emphasize that the validity inference concerns the individual’s score, and 

not the individual himself.  
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A Process for Investigating ISV 

Due to the myriad potential sources of CIV, it is practically impossible to identify 

with certainty which scores have been meaningfully affected by construct-irrelevant factors 

and which ones have not.  In a particular measurement context, however, we can usually 

make reasonable judgments regarding which construct-irrelevant factors pose the greatest 

ISV threat, and then attempt to identify the test events that have been meaningfully affected 

by those factors.  For example, in a low-stakes achievement testing context, low student 

motivation would typically pose a major ISV threat, while cheating would not.  In contrast, in 

the context of a high-stakes licensure test in a medical field, cheating or test-taker anxiety 

would pose far more serious ISV threats than would low motivation.  Thus, the process of 

seeking evidence for ISV becomes one of investigating whether one or more pre-identified 

sources of CIV influenced the test event under study.  This process can be described in six 

steps. 

Step 1:  Identify the Target ISV Threats 

Which sources of CIV are most likely to pose threats to ISV for a particular test 

event?  The taxonomy of CIV sources provided by Haladyna and Downing (2004) should 

provide a useful guide, from which we should be able to identify the sources of greatest 

concern.  The outcome of this step defines the focus of the remaining steps.     

Step 2:  Develop Indicators for Each ISV Threat 

Identifying the presence of a particular source of CIV in a given test event represents 

the largest challenge in evaluating ISV.  To that end, we must be able to identify suitable 

indicators of the CIV source.  In addition, if individual test scores will be classified as invalid 

on the basis of these indicators, it is important that validity evidence can be provided for use 
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of the indicators.  Because classifying a score as invalid is a nontrivial matter, even in low-

stakes assessment, we must be able to justify the reason for the ISV decision. 

Step 3:  Establish Criteria for Classifying a Score as Invalid 

After indicators of CIV have been chosen, we should also establish criteria for 

classifying a test event as invalid.  For example, if we are using a self-report measure of test 

anxiety to identify those test events that were unduly influenced by student anxiety (and 

therefore were likely to negatively bias the student’s test score), we should operationally 

define procedural rules for invalidating scores (e.g., if the mean anxiety score is greater than 

some value x, then the score will be deemed invalid). 

Step 4:  Analyze the Test Events and Flag Invalid Events.   

After the CIV indicators have been chosen and criteria established for invalidating 

test scores, the next step is to analyze a set of test events to identify which test scores (if any) 

have been flagged (i.e., classified) as invalid. 

Step 5:  Take Corrective Action Regarding Invalid Test Events 

Once invalid test scores have been identified, an additional step is to decide what to 

do about them.  This generally involves policy decisions, for which there are often a range of 

options.  For example, we might choose to not release the scores at all, re-test the students, 

indicate on score reports which scores are untrustworthy, statistically adjust the test scores to 

remove the effects of the CIV, or impose some type of sanctions on students (e.g., in the case 

of cheating). 
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Step 6.  Evaluate the validity of the method for classifying test events as indicating low 

ISV. 

In this step, the validity of the flagging process is considered.  Is there evidence to 

support a conclusion that the flagged test events have been meaningfully affected by the CIV 

source under consideration?  For example, if the flagged test events are removed, do the 

remaining events exhibit stronger traditional validity evidence?     

Example 1: An Adaptive Test of Reading Proficiency 

The context of this example is an interim testing program in reading.  Testing records 

in reading from the fall and spring testing terms of the 2010-2011 academic year in a single 

U.S. state were retrieved from the Northwest Evaluation Association’s Growth Research 

Database (GRD).  The test records were limited to 287,690 students in grades 3-9 who were 

tested in reading during both fall and spring as part of their district sponsored testing 

programs. All tests were part of NWEA’s Measures of Academic Progress (MAP) testing 

system, which administers computerized adaptive tests (CATs).  MAP proficiency estimates 

are expressed as scale scores (RIT) on a common scale that permits a student’s growth to be 

assessed when he is tested at different times. 

ISV Threat: Student Test-Taking Effort 

As the first step of the ISV process, we identified an ISV threat that was of particular 

concern with the MAP assessment.  Obtaining a valid test score from a student involves more 

than just administering a high-quality test under standardized conditions.  A valid score also 

requires a motivated student who behaves effortfully throughout his test event.  The fact that 

this is not always the case represents an ISV threat.  Because item responses provide the 

basis for estimating the student’s proficiency, any responses that do not reflect the student’s 
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proficiency level will distort proficiency estimation, and thereby diminish the validity of the 

student’s score.  In addition, because non-effortful responses tend to be incorrect more often 

than those for which the student exhibits good effort, the presence of non-effortful behavior 

will tend to result in a negatively biased proficiency estimate. 

In MAP, a student’s growth is measured using his RIT score at Time 2 minus his RIT 

score at Time 1.  In practice, the observed growth scores are consistent with the nature and 

distribution of growth that we would expect to see in these students.  However, we 

sometimes observe growth score values that are either unreasonably low or unreasonably 

high.  For students whose true growth between the two test events is low relative to the size 

of the measurement errors inherent in their RIT scores, the instability in the RIT scores at 

each time point will sometimes result in negative growth scores being observed by chance. In 

contrast, we occasionally see negative growth scores whose magnitude exceeds what we 

could reasonably attribute to low growth and the presence of measurement error in each of 

the test scores.  Similarly, we sometimes observe positive growth scores whose magnitude 

far exceeds the amount of actual academic growth that a student could realistically make 

during that time period.  Both forms of extreme growth—but especially the negative form—

are difficult for teachers, parents, and students to understand, and their occurrence reduces 

the teacher’s ability to make useful instructional decisions concerning the students in 

question. 

Extreme growth scores have been shown to be associated with low student effort on 

one of the two testing occasions whose scores are used to construct a growth score (Wise & 

Ma, 2012).  Specifically, low effort at Time 1 would introduce a construct-irrelevant factor 

that could negatively bias test performance.  If the student then gave good effort at Time 2, 
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then one would expect to see a growth score that overestimates the amount of academic 

growth the student had actually attained.  And because low test-taking effort can have a 

sizable effect on test performance (Wise & DeMars, 2004; 2010), this overestimated growth 

can be substantial in magnitude.  Likewise, if a student gave good effort at Time 1, but low 

effort at Time 2, one could expect to see sizable negative growth.  Therefore, at Step 1 of the 

ISV process, student effort is considered a key CIV source that threatens the validity of 

individual growth scores. 

The second step of the process was to identify indicators of the ISV threat.  In 

choosing these indicators, we focused on two characteristic behaviors of students exhibiting 

low test-taking effort.  First, they often respond very rapidly to items—more rapidly than it 

would take to even read the item (Wise & Kong, 2005).  This type of response behavior has 

been termed rapid-guessing behavior, with all other responses being termed solution 

behavior (Schnipke & Scrams, 1997; 2002).  Wise and Kong (2005) developed an index of 

test-taking effort termed response time effort (RTE). Second, non-effortful student responses 

tend to exhibit accuracy rates similar to those from random responding (Wise & Kong, 

2005).  Both RTE and response accuracy provide the bases of the effort indicators. 

The third step of the ISV process was to establish criteria for identifying invalid test 

events.  We developed three effort criteria for use in flagging student test events as indicating 

non-effort.  These criteria, the details of which are found in the Appendix, are based on RTE 

and response accuracy.  In our effort analysis of CAT data, a student’s test event was 

classified as invalid (i.e., as untrustworthy) if any of the three flags had been triggered.  In 

addition, the total number of flags triggered by a given test event was studied as a potential 

indicator of the degree of non-effort that occurred. 
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The fourth step in the ISV process was to evaluate the MAP reading data and identify 

test events whose scores were classified as invalid due to low effort.  Table 1 shows the rates 

of occurrence for the various effort flags at each time period.  There were several noteworthy 

aspects to these results.  First, more flags were triggered in the fall than in the spring.  

Second, many of the test events that triggered any of the flags triggered multiple flags, as 

23,952 students triggered at least one flag in the fall, while the total number of flags triggered 

exceeded 51,000.  Similarly, in the spring, 16,423 of the test events triggered flags while the 

total number of flags triggered exceeded 34,000.  Finally, the flags based solely on response 

time (flags A & B) were triggered more often than the flag based on the joint occurrence of 

rapid guessing and low response accuracy (flag C). 

Having identified students who triggered effort flags, the fifth step of the ISV process 

was to take corrective action.  Two types of policy decisions were made.  The first was a 

decision to include ISV information on MAP score reports by indicating scores classified as 

invalid.  The second was a decision to exclude from item calibration analyses and norms 

studies the data from invalid test events. 

The sixth step of the ISV process was to evaluate the validity of the flagging process 

itself.  This was done by assessing the impact of removing invalid scores from the sample.  

Table 2, which focused on students with invalid scores in the fall only, shows the impact of 

removing their scores from the sample.   The removal of students who triggered flags only in 

the fall test had the greatest impact on the numbers of students with very high positive 

growth.  Likewise, Table 3 shows that removing students who triggered flags only in the 

spring test had the greatest impact on the numbers of students with very high negative 

growth.  These results are consistent with our expectation that high positive and negative 
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growth scores are associated with low-ISV affecting only one of the two test events whose 

scores were used in measuring growth. 

This effect is illustrated in Figure 1, which shows the scatterplots of the fall and 

spring reading RIT scores for the 9
th

 graders in the sample both before and after the flagged 

students were removed.  Although the upper display depicts a positive relationship, there 

were a number of outliers both above and below the major axis of the distribution.  Outliers 

well above the major axis indicated substantial negative growth, with RIT growth scores as 

low as -71, while outliers well below the major axis indicated high positive growth, with 

scores as high as +84.  As a reference, 9
th

 graders taking the MAP in reading tend to show 

RIT fall-to-spring growth values in the single digits, with values rarely exceeding 20 points.  

Hence, the outliers in the upper display of Figure 1 indicate the presence of unreasonable 

growth scores. 

The lower display depicts the relationship between the fall and spring RIT scores 

when the scores of students who triggered one or more effort flags were removed.  It is 

evident that after removal the graph had few outliers, supporting the conclusion that the 

outliers were due to low student effort.   

The impact of score removal can also be seen in the correlations between the 9
th

 grade 

fall and spring RIT scores.  The correlation increased from .82 to .86 after student removal, 

even though the standard deviations of the RIT scores decreased (from 16.06 to 14.84 in the 

fall and from 15.97 to 14.49 in the spring).  Thus, student removal had the twin effects of 

reducing the range of scores for both RIT variables while increasing their correlation—a 

finding that is consistent with a conclusion that a source of CIV had been removed from the 

test data. 
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Table 4 shows the impact of low ISV on growth scores.  For students triggering no 

flags, growth averaged 5.63 RIT points.  For those students triggering effort flags in the fall 

only (whose growth scores would be positively biased), mean growth was roughly twice as 

high.  For those triggering effort flags in the spring only (whose growth scores would be 

negatively biased), mean growth was markedly lower and slightly negative.  In addition, the 

standard deviations of growth scores reflect the presence of effort-related CIV.  The standard 

deviations were larger for students triggering flags during only one of their test events 

(relative to those triggering no flags), and larger still for those triggering flags in both fall and 

spring. 

Finally, Table 5 shows the relationship between student growth and the number of 

effort flags triggered.  For flags triggered only in the fall, there was a positive relationship, 

while for those triggered in the spring the relationship was negative.  The spring findings 

indicate that the average RIT score for students exhibiting three flags in the spring was over 3 

RIT points lower than it was in the fall, after a full year of instruction.  This underscores the 

degree to which low effort can negatively bias proficiency estimates and distort assessment 

of growth. 

Collectively, the evidence strongly indicated that the flagged test events reflect the 

presence of non-effortful test-taking behavior.  Such behavior diminished the validity of the 

resulting RIT scores as estimates of student proficiency (which, in turn, invalidated growth 

scores based on the RIT scores). 

Example 2: Predicting College Readiness 

The second example, which further illustrates on the impact of low ISV on score 

validity, studied the relationships between MAP reading scores and several college readiness 
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assessments in reading (EXPLORE, PLAN, and ACT).  The data from an earlier study 

(NWEA, 2011) were analyzed to better understand how low student effort affects the 

relationships between test scores.  In that study, EXPLORE, PLAN, and ACT scores from 

26,000 students were linked to their MAP assessment RIT scores from the same (or prior) 

testing season.   

We focused only on the data from approximately 17,000 of the students whose MAP 

reading data could be linked to college readiness scores from the same testing season.  Data 

from the MAP test events were subsequently evaluated using the three effort-related flagging 

criteria. 

Because the MAP scores and the college readiness test scores are each measures of 

the same construct (reading proficiency), we would interpret sizable positive relationships 

among their scores as conventional evidence of test score validity.  Table 6 shows the 

degrees of linear relationships between the MAP and the three college readiness tests, both 

before and after invalid MAP test scores were removed.  To aid comparisons, the degree of 

linear relationship is expressed as a squared correlation (representing the proportion of shared 

variance between the two variables).  For two of the three college readiness tests, the squared 

correlation increased after removal of invalid scores.  The largest increase occurred with 

ACT reading, for which the highest percentage of students with invalid MAP scores was 

removed (17%).   

Table 6 also shows that the squared correlations based only on the students with 

invalid MAP scores were much lower, consistent with the presence of construct-irrelevant 

variance in the MAP data.  These squared correlations were not near zero, however, because 

students rarely behave non-effortfully throughout an entire test event.  More typically, a 
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student will disengage during only a portion of a test event, suggesting that the scores from 

invalid test events reflect a mixture of effortful and non-effortful test taking behavior (Wise 

& DeMars, 2006).  The weak, yet positive, correlations for invalid MAP scores observed in 

Table 6 would be expected under this conceptualization. 

These results illustrate that the presence of scores with low ISV attenuates the degree 

of association between variables.  In the present example, this decreased the ability of MAP 

scores to predict college readiness. 

Summary 

Whenever the purpose of measurement is to inform an inference about an individual 

student, it is important that we be able to trust that the student’s test score is valid.  Such 

confidence comes from the dual requirements that (a) we are using a competently-designed 

test can provide valid scores from the target population of students and (b) that the student 

actually responds to that test so as to permit a valid measure of his or her level of proficiency.  

While the first requirement pertains to traditional score validity, the second pertains to ISV.  

The central assertions of this paper are that (a) traditional validity evidence is necessary, but 

not sufficient, to ensure that an individual student’s score is valid, and (b) an additional 

process is needed to gather ISV-related validation evidence. 

Because ISV is the degree to which an individual’s test score is free from sources of 

student-related CIV, the information to be collected focuses on indications that CIV has 

affected the test score.  We described a six-step ISV process, in which the sources of CIV 

that represent the most serious threats to ISV are identified, indicators are established along 

with appropriate criteria, invalid test events are identified, policies are developed for 



Running Head: INDIVIDUAL SCORE VALIDITY   20 

effectively dealing with invalid test events, and evidence is gathered that measurement is 

improved by identifying test events that reflect low ISV. 

The most common sources of CIV that threaten ISV are familiar to test givers.  They 

are student variables that include: low test-taking effort, high test-taking anxiety, fatigue, 

illness, and cheating.  To identify these threats to score validity, there is an array of choices 

of indicators we might use.  There may be occasions when student self-report scales could 

provide useful information (e.g., with effort or anxiety).  In addition, there are a number of 

statistical indicators, such as person fit indices, response accuracy, or item response time (if 

the test is computer administered) that can be considered.  Finally, there are different types of 

biometric information that can be used or might be used in the near future, such as galvanic 

skin response (GSR), heart rate, blood pressure, eye movements, or brain patterns.  Of 

course, research will be needed to understand the most unobtrusive and nonreactive ways to 

collect such information and the probative value of such measures as indicators of ISV 

threats will need to be established.   

Ultimately, we hope that consideration of ISV will become a routine aspect of 

educational measurement.  Test givers can exert a great deal of control about the content of a 

test and the conditions under which the test is administered.  It is important to recognize, 

however, the limits of the test giver’s control.  In practice, it is useful to be mindful of 

potential construct-irrelevant threats to score validity and the extent to which they can 

meaningfully distort test scores.  Furthermore, it is important that we have methods for 

identifying the presence of such threats and policies in place for dealing with them.  Like the 

school psychologist administering an individually administered test, we should be able to 

evaluate each test event for evidence that it has been affected by CIV, and that the resulting 
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test score cannot not be trusted to provide valid information about the student.  It is through 

these considerations that we can ensure the validity of individual student scores. 
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Table 1 

Numbers of Effort Flags Triggered at Each Time Period 

Test Session Flag N % 

Fall, 2010 A (Overall RTE) 18,948 6.59 

 B (Local RTE) 20,128 7.00 

 C (Joint RTE and Accuracy) 12,452 4.33 

     At Least One Flag 23,952 8.33 

     Zero Flags 263,738 91.67 

Spring, 2011 A (Overall RTE) 12,873 4.47 

 B (Local RTE) 13,660 4.75 

 C (Joint RTE and Accuracy) 8,110 2.82 

     At Least One Flag 16,423 5.70 

     Zero Flags 271,267 94.29 

Note.  N = 287,690. 

 
  



Running Head: INDIVIDUAL SCORE VALIDITY   25 

 

Table 2 

Decrease in the Numbers of Students from Various Growth Score Intervals When Low-ISV Test 

Events From the Fall Testing Were Removed 

 Growth Score Interval
a
 

 0 to 10 10 to 20 20 to 30 > 30 

All Students 128,898 61,936 12,051 2,479 

If Students with Low ISV 

are Removed 
5,710 5,095 2,281 1,016 

Percent Removed 4.43% 8.23% 18.93% 40.98% 

Note.  Students triggering as least one effort flag during both the fall and spring testing sessions 

were excluded (n = 6,749). Students who exhibited low effort in the fall testing only would be 

expected to exhibit high positive growth.  

a
 The standard error of growth scores in reading was approximately five points. 

 
 
 
 

Table 3 

Decrease in the Numbers of Students from Various Growth Score Intervals When Low-ISV 

Test Events From the Spring Testing Were Removed 

 Growth Score Interval
a
 

 < -30 -30 to -20 -20 to -10 -10 to 0 

All Students 232 929 8,839 65,577 

If Students with Low ISV 

are Removed 
171 411 1,375 2,992 

Percent Removed 73.71% 44.24% 15.56% 4.56% 

Note.  Students triggering as least one effort flag during both the fall and spring testing sessions 

were excluded (n = 6,749). Students who exhibited low effort in the spring testing only would be 

expected to exhibit high negative growth.  

a
 The standard error of growth scores in reading was approximately five points. 
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Table 4 

Relationship Between Effort Flags and MAP Growth Scores 

Flagged for Effort? N Mean Growth SD Growth 

No 254,064 (88%) 5.63 8.42 

In Fall Only 17,203 (6%) 10.95 11.95 

In Spring Only 9,674 (3%) -0.27 12.52 

In Both Fall and Spring 6,749 (2%) 3.99 14.84 

 

 

 

 

Table 5   

Mean Growth, by Number of Effort Flags Triggered, for Each Testing Period 

Test Session Number of Effort Flags N Mean SD 

Fall, 2010 0 263,738 5.41 8.68 

 1 4,462 8.40 10.40 

 2 6,522 10.02 11.75 

 3 6,219 13.76 12.63 

Spring, 2011 0 271,267 5.96 8.78 

 1 2,757 2.64 10.95 

 2 3,793 0.05 11.83 

 3 3,124 -3.22 13.90 

Note.  6,749 students triggering as least one effort flag during each of the testing sessions 

were excluded. 
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Table 6 

Squared Correlations between MAP Reading Scores and College Readiness Test Scores 

  
 

Based on All Students 
 

Based Only on Student 

Scores Classified as Valid 
 

Based Only on Student 

Scores Classified as Invalid 

College Readiness Test Grade 
Squared 

Correlation 
N 

 Squared 

Correlation 
N 

 Squared 

Correlation 
N 

EXPLORE Reading 8 .43 11,055  .44 10,085  .14 970 

PLAN Reading 10 .38 3,458  .38 3,122  .13 336 

ACT Reading 11 .49 2,459  .53 2,046  .24 413 

Note.  A squared correlation indicates the proportion of variance shared between two variables. 
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Figure 1.  Scatterplot of the fall and spring reading RIT scores for 19,254 9
th

 graders (top 

display) and after students triggering one or more effort flags on either test were removed 

(bottom display).  A total of 4,289 students were removed (22%).  There were 1,267students 

who exhibited low effort on both tests (7%). 
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Appendix 

Effort Flagging Criteria for Identifying Low ISV Scores 

When multiple-choice items are being administered on a computer-based test, there 

are two types of behaviors that indicate a student who has become disengaged from his test 

and is exhibiting non-effortful test taking behavior.  First, he may respond to items very 

rapidly (i.e., faster than it should take him to read the item and thoughtfully consider the 

problem it poses).  Second, his answers tend to be correct at a rate that is consistent with 

what would be expected by chance through random guessing.  Rapid responses typically 

exhibit chance-level accuracy.  Additionally, chance-level accuracy can provide supporting 

evidence of non-effortful test taking.  Both response time and answer accuracy are used in 

the criteria for flagging MAP test events as exhibiting low ISV due to effort.   

Rapid-guessing behavior is identified using response time effort (RTE; Wise & Kong, 

2005), which is based on the conceptualization that each item response can be classified as 

reflecting either rapid-guessing behavior or solution behavior (Schnipke & Scrams, 1997, 

2002).  This classification is done using pre-established time thresholds for each item using 

the normative threshold method (Wise & Ma, 2012) set at 10 percent.  This means that the 

threshold for an item is set at 10 percent of the average time students have historically taken 

to answer the item.  RTE for a test event equals the proportion of the student’s responses that 

were solution behaviors.  This leads to the first effort flag: 

Flag A: If the student gave rapid guesses to at least 15% of the items (overall RTE ≤ .85). 

Flag A specifies the amount of rapid-guessing behavior that would be tolerated over 

the entire test event.  Test-taking effort, however, is not all-or-none.  Students sometimes 
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exhibit non-effort during only a portion of a test event.  This complicates the identification of 

non-effortful behavior, and an overall indicator may not be sensitive to detecting lesser 

degrees of non-effort.  For example, if a student gave good effort on the first 30 items of a 

50-item CAT and then gave 7 rapid guesses during the remaining 20 items, his non-effort at 

the end of the test would not be enough to trigger Flag A. 

One solution to this problem is to consider rolling subsets of the items from a test 

event.  For example, for subsets of size 10, we would consider items 1-10, then 2-11, then 3-

12, and so on, until the end of the test.  In general, for a k-item test and subsets of size r, there 

will be (k-r)+1 rolling subsets.  Using rolling subsets of size 10, we developed two additional 

RTE-based flags for considering low effort on a more local level: 

Flag B: If the student exhibited low RTE (local RTE ≤ .70) on at least 20% of the rolling 

subsets. 

 Although item response time provides a useful indicator of non-effortful behavior, 

there are times when students become disengaged from during a test event without exhibiting 

rapid-guessing behavior.  Inspection of MAP data indicates, for example, a number of test 

events in which a student gave low accuracy responses to items administered near those 

classified as rapid guessing.  The combination of low accuracy responses and rapid guessing 

represents across a string of items represents a potent indicator of non-effortful behavior. 

Low-accuracy responses should be evaluated carefully, however, because they could 

also be due to the student receiving items that were much too difficult for him.  In principle, 

this alternative explanation should not pose a problem for a CAT because the CAT algorithm 

strives to select and administer items that a given examinee has a .50 probability of 
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answering correctly (which requires that the item pool is able to select items that are well 

targeted to each student).  With MAP, however, it occasionally occurs that close targeting is 

not possible.  This tends to happen in higher grades for high proficiency students, which 

means that items of high enough difficulty were not available to administer during those 

MAP test events
1
. 

Low accuracy responses should be used as indicators of low effort only if it is 

established that they were not due to poorly targeted items.  To accomplish this, a pool 

adequacy requirement is imposed specifying that low response accuracy will only be 

considered for test events in which at least 60% of the time during the CAT, the student 

received an item whose difficulty was no more than three RIT points away from the student’s 

momentary proficiency estimate
2
.  This led to the development of a third effort flag based on 

the joint occurrence of rapid responses and low accuracy on any of the rolling subsets: 

Flag C: If the student passed no more than two items (local accuracy ≤ .20) and gave three or 

more rapid guesses (local RTE ≤ .70) on any 10-item subset, and at least 60% of all of 

the administered items were within three RIT points of the student’s momentary 

proficiency estimate. 

In the effort analysis of MAP data, the score from a student’s test event was classified 

as invalid due to low ISV if any one of the three effort flags was triggered.   

                                                        
1
 MAP is usually administered to students several times each academic year and, once an item has been 

administered to a student, that item cannot be re-administered to the same student for 24 months.  After 

multiple MAP administrations to low proficiency students, this can lead to a shortage of available closely 

targeted items. 
2
  The standard errors of student scores in math are typically about 3.0 RIT points, while those in reading are 

about 3.2 RIT points. 
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Abstract 

Test fraud typically involves actions taken by individuals to positively distort a test score in 

such a way that it overstates what a student knows and can do.  Teacher effectiveness, 

however, is increasingly being evaluated using student growth (i.e., the difference between 

scores at Time 1 versus Time 2).  In this context, a novel type of potential fraudulent 

behavior becomes a concern.  Test givers may be motivated to try to depress student test-

taking effort at Time 1 in order to inflate the subsequent growth scores.  To investigate the 

extent to which this represents a real practical problem, data were analyzed from a set of 

charter schools that has for years used fall-spring growth data to evaluate teacher 

effectiveness.  The results showed clear evidence of lower effort in the fall, supporting the 

conclusion that this differential effort represents a real threat to the validity of inferences 

made on the basis of growth scores. 
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Identifying Non-Effortful Student Behavior on Adaptive Tests:  

Implications for Test Fraud Detection 

 The goal of educational assessment is to produce test scores that accurately indicate 

what students know and can do in a particular content domain.  This goal is pursued 

through the administration of a test whose items adequately represent that content domain 

and whose items are sufficient in number to yield reliable scores.  The scores from such a 

test are then used to either (a) make inferences about individual students (e.g., What is 

Michael’s level of math proficiency?) or (b) make inferences based on the test scores of 

groups of students (e.g., How well did the students at Lakeside Middle School do on the 

state assessment in math?). 

 Obtaining a valid score for a particular student, however, requires more than just 

the administration of a well-developed standardized test.  There are a number of potential 

threats to the validity of an individual test score.  Some threats pertain to the behavior of 

the student (e.g., Did he give good effort to his test?  Was he feeling ill?  Did he cheat to try 

to get a good score?).  Others pertain to the context in which the test occurred (e.g., Was the 

testing done late in the day?  Were there noisy distractions?).  Additionally, after the test 

event had concluded, errors might be made in scoring the test, which could result in a score 

that was either too high or too low.   

  Because these types of potential threats to validity are unrelated to the 

achievement construct under study, and because they affect some students more than 

others, they introduce construct-irrelevant variance into the test scores (Haladyna & 

Downing, 2004).  Individual score validity (ISV) addresses the trustworthiness of individual 

test scores (Hauser & Kingsbury, 2009; Hauser, Kingsbury, & Wise 2008; Kingsbury & 
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Hauser, 2007).  Wise, Kingsbury, and Hauser (2009) defined ISV as the extent to which test 

scores are free from construct-irrelevant factors.  They encouraged measurement 

professionals to identify the most serious construct-irrelevant threats to ISV in a given 

measurement context, and to develop methods for assessing the degree to which those 

threats had affected particular scores. 

 An alternative definition for ISV, and one that is useful for this paper, is based on the 

concept of score distortion: 

                     [
                    

                         
                

]   [
              
              
          

]             (1) 

Equation 1 is an abstract quantity, as we will not know for certain the student’s actual level 

of proficiency.  Conceptually, however, ISV for a student is attained when distortion of his 

score is equal to zero (or at least within the limits of measurement error).  Positive values 

of distortion correspond to instances when the test score over-estimates the student’s 

proficiency level; negative values indicate an under-estimation of proficiency.  Positive and 

negative distortions correspond to different types of threats to ISV. 

 Positive distortion suggests the possibility of at least one of several types of test 

fraud initiated by the student, who will frequently be motivated to attain the highest score 

that he can.  First, the student could have copied answers from a more proficient test taker 

during the test session.  Second, he could have acquired pre-knowledge of at least some of 

the test items he would receive, and made sure he knew the answers to them prior to the 

test session.  Third, he may have brought in notes or surreptitiously used technology (such 

as a smartphone) to acquire the answers to questions during the test session. 
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 Because of the pressures of teacher and school accountability, test givers (such as 

teachers or principals) might also be motivated to engage in fraudulent testing practices.  If 

specific items to appear on a test were known to test givers beforehand, they could provide 

that information directly to students before the testing session.  During a testing session, 

they could subtly (or not) point out to students their incorrect answers and possibly 

indicate the answers they should be giving.  After the testing session, test givers could 

privately alter students’ answer sheets, either by filling in the correct answers to omitted 

items or by changing incorrect answers to correct. 

 Regardless whether it is initiated by the student or the test giver, test fraud is 

intended to create positive score distortion by producing test scores that overstate what 

students actually know and can do.  Figure 1 illustrates these dual influences on distortion.  

The solid arrows indicate that students and test givers can directly induce distortion (and 

diminish ISV) through their actions. 

 

 

 Negative distortion, in contrast, is attributable to the influence of construct-

irrelevant factors leading to scores that underestimate what students know and can do.  

Figure 1.  The intentional influences of students and test givers on distortion. 

Test Givers’ Motivation to 
Attain Low Distortion 

Student’s Motivation to 
Attain Low Distortion 

Distortion 
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Any factor that degrades test performance during the test session induces negative 

distortion.  This can include, but is not limited to, student illness or emotional distraction, 

testing rooms that are too warm/cold or have noise distractions, or unmotivated students 

who do not give good effort throughout the test.  Unlike positive distortion, negative 

distortion is generally not associated with intentional test fraud. 

Test Fraud Through Negative Distortion 

 There is, however, at least one scenario in which test fraud could be induced 

through negative distortion.   There recently has been a growing emphasis in U.S. schools 

on evaluating teacher effectiveness based in part on student growth data.  Growth in this 

context is defined as the difference between a student’s proficiency level at Time 1 and that 

at Time 2 (assuming that the two scores share a common measurement scale).  The higher 

the levels of growth that a teacher’s students exhibit, the more positive will be the teacher’s 

evaluation.  If a teacher can somehow depress his students’ scores at Time 1, then student 

growth will consequently be inflated.  That is, if the teacher can induce negative distortion 

at Time 1, then he will induce positive distortion on student growth scores. 

 How could this be accomplished?  One way would be through the manipulation of 

student motivation.  There is a well-documented relationship between test-taking 

motivation and performance; if a student is unmotivated and behaves in a non-effortful 

manner, the resulting test score is likely to underestimate his actual level of proficiency 

(Wise & DeMars, 2005).  In testing situations where students perceive few or any personal 

consequences associated with test performance, they may be particularly responsive from 

cues from their teacher regarding how much effort they should expend.  Thus, to the degree 

to which a teacher downplays the importance of the Time 1 test and emphasizes the 
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importance of the Time 2 test, positive distortion could be induced.  The dotted line in 

Figure 1 indicates this indirect influence, by which the test giver induces distortion through 

manipulation of the student’s motivation. 

 Students exhibiting markedly lower test-taking effort at Time 1 than at Time 2 

would characterize the scenario described above.  Thus, differential levels of effort provide 

an important indicator that distortion of growth scores has occurred.  

Measuring Test-Taking Effort 

 As computer-based tests (CBTs) have become more common, there has been an 

increased interest in the uses of item response time (which can be collected during a CBT) 

to improve the measurement of academic achievement.  One research theme has focused 

on the use of response time to investigate examinee engagement.   Early research (Bhola, 

1994; Schnipke & Scrams 1997, 2002) investigated, using item response time, changes in 

examinee behavior as time was running out during a speeded, high-stakes test.  They found 

that many examinees switch strategies from trying to work out the answers to items 

(termed solution behavior) to rapidly entering answers to remaining items in hopes of 

guessing some of them correct (termed rapid-guessing behavior). 

 Wise and Kong (2005) observed that rapid-guessing behavior also occurred during 

unspeeded low-stakes CBTs.  They showed that in this context rapid-guessing behavior 

indicates instances when a student was not expending effort toward attaining a good score1.  

Wise and Kong developed a measure of test-taking effort, termed response time effort (RTE), 

which equals the proportion of a student’s responses that were solution behaviors.  An RTE 

                                                        
1 Regardless of the stakes of the test or whether or not the test is speeded, a rapid guess indicates 
essentially the same thing—that the examinee was not engaged in solution behavior. 
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value of 1.0 indicates that a student exhibited only solution behavior, a value of .90 

indicates 10% of the item responses were rapid guesses, and so on. 

 Identification of rapid-guessing behavior requires that a time threshold be 

established for each item.  This permits each item response to be classified as either a 

solution behavior or a rapid guess.  Two basic principles are followed in establishing time 

thresholds.  First, we want to identify as many instances of non-effortful item responses as 

possible.  Second, we want to avoid classifying effortful responses as non-effortful.  There is 

a tension between the two principles such that the first encourages us to choose a longer 

threshold, while the second encourages us to choose a shorter one.  Thresholds are chosen 

to balance the two principles, with the second principle being of higher priority. Good 

discussions of item threshold identification methods and issues are found in Ma, Wise, 

Thum, and Kingsbury (2011) and Wise and Ma (2012). 

 The identification of rapid-guessing behavior is important because it indicates the 

presence of item responses that exert a negative bias on a proficiency estimate.  This is due 

to rapid guesses being correct at a rate that is usually markedly lower than what would 

have been the case had the student exhibited solution behavior.  Therefore, the more rapid 

guesses occur during a test event, the more negative distortion is likely present in a test 

score.  Thus, the presence of rapid-guessing behavior provides useful evidence that a score 

that has low ISV. 

 When a computerized adaptive test (CAT) is used, an additional indicator of low 

student effort is provided by the accuracy of the item responses.  However, unlike rapid 

guessing—which can be assessed for each item response—accuracy must be considered 

across a set of items.  The CAT algorithm is designed to select and administer items that a 
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student under solution behavior has about a .50 chance of getting correct.  Under rapid-

guessing behavior, in contrast, items will be correct at a rate consistent with random 

guessing.  For multiple-choice items with five response options, a student would be 

expected to provide a correct response about 20% of the time.  Hence, because responses 

to items administered in a CAT will have consistent, differential accuracy rates under 

solution behavior and rapid-guessing behavior, the accuracy of a student’s responses to a 

set of items can be evaluated as to whether it appears to reflect solution behavior or rapid-

guessing behavior.  For example, if during the last half of a test a student passed only 22% 

of his items on a CAT, we might decide that he was not giving effort during that portion of 

the test and conclude that his score should be considered as reflecting low ISV. 

 Thus, both response time and response accuracy can provide valuable information 

about the effort that was expended by students during a CAT.  In our research with NWEA’s 

Measures of Academic Progress (MAP), which is used to measure the academic growth of 

primary and secondary school students, we have developed a set of five flagging criteria for 

identifying test events that yield scores with low ISV.  These heuristic criteria, which are 

described in the Appendix, are based on a combination of RTE and response accuracy, 

either singly or in combination.  The criteria have been shown to identify many instances of 

non-effortful student behavior (Wise & Ma, 2012), and can be used to evaluate the degree 

of test-taking effort exhibited at different time periods. 

A Case Study of Teacher Evaluation and Test-Taking Effort 

 It is one thing to describe a scenario in which test givers could manipulate student 

effort to inflate growth scores, and another to demonstrate that it represents a real 

problem.  That is, if a problem has little chance of actually occurring, its solution may have 
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little practical value.  To evaluate this issue, we studied data from a context in which 

student growth has been used as part of a teacher evaluation process for a period of time.  

These data should provide a basis to assess the degree to which Time 1 versus Time 2 

effort discrepancies are present. 

Data Source 

 This case study focused on a large charter school management organization that 

operates charter schools in multiple U.S. states.  They have used MAP test results as part of 

their teacher evaluation system for a number of years.  The evaluation system for teachers 

includes four components, with a substantial portion being an evaluation of student 

achievement based on fall-to-spring growth results for MAP.   

 The implementation of MAP as part of the teacher evaluation system is longstanding.  

As the charter school organization has increased its capacity around data use, it has refined 

and implemented more sophisticated approaches to measuring teacher effectiveness from 

test data.  From the teachers’ standpoint, however, one aspect has remained constant: a 

sizable portion of their evaluation is based on the amount of student academic growth in 

MAP that is observed between the beginning (i.e., fall) of an academic year and the end (i.e., 

spring) of that academic year.  Hence, the evaluation system is consistent with the scenario 

described earlier in which there could be an incentive for test givers to try to depress fall 

scores with the goal of inflating growth scores.  Occurrences of this could be identified by 

markedly more non-effortful test-taking behavior being observed in the fall as compared to 

the spring.   

Student effort was measured using both RTE and the percentage of test events 

whose scores were classified as invalid using the five effort criteria described in the 
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Appendix.  Ideally, we sought to study effort for groups of students defined by common 

teachers or classrooms.  For our initial analyses, however, we were able to obtain reliable 

student groupings only at the school level.  Nevertheless, we believed that we might 

observe differential fall-spring effort even at that coarser level.   

The data analyses focused on MAP fall-spring growth scores in math and reading in 

grades 3-8 from 39 charter schools within a single U.S. state.  MAP tests are untimed, 

interim CATs, with the tests in math being generally 50 items in length, while those in 

reading are generally 40 items in length.  MAP proficiency estimates are expressed as scale 

(RIT) scores on a common scale that allows growth to be assessed as students are tested at 

different times.  The standard errors of the fall-spring scores in math are typically about 

4.25 points, while those in reading are about 4.50 points. 

Results and Discussion 

Table 1 shows descriptive statistics for all of the students across the charter schools.  

Two findings are particularly noteworthy.  First, both mean RTE and percent invalid scores 

indicate that non-effortful behavior occurred more frequently in the fall than in the spring.  

Second, non-effortful behavior was markedly more prevalent in reading than in math.  The 

first finding was reported by Wise, Ma, Kingsbury, & Hauser (2010) and the second has 

been reported in two previous studies (Wise et al., 2009; Wise et al., 2010). 

Table 1.  Descriptive Statistics for RTE, Percentage of Invalid Scores, and Fall-to-Spring Growth  

  Mean RTE  Percentage of Invalid Scores  
 

Content 
Area 

N Fall Spring  Fall Spring 
RIT Growth 

Mean 
RIT 

Growth SD 

Math 13,416 .993 .997  3.4 1.4 10.39 7.75 

Reading 13,463 .987 .994  7.3 4.1 8.17 8.81 
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 The accuracy of solution behaviors and rapid-guessing behaviors was consistent 

with our expectations with data from an adaptive test.  The accuracy rates for item 

responses classified as solution behaviors in math and reading were 51.0% and 51.3%, 

respectively.  The accuracy rate for rapid guesses in math (whose items had 5 response 

options) was 21.0%, which is close to the value expected by random responding.  Similarly, 

the accuracy rate for rapid guesses in reading (whose items had 4 response options) was 

26.3%. 

  

A scatterplot of spring versus fall mean RTE values in math is shown in Figure 2.  If 

effort had been similar in the fall and spring at each school, the data points would be 

expected to fall near the main diagonal of the graph.  Figure 2 shows, however, a somewhat 

surprising data trend indicating lower mean RTE in the fall for nearly every school.  The 

results for reading, shown in Figure 3, indicate the same basic trend.  In addition, there was 

substantial variation in the fall RTE values, with the graphs showing some schools with 

markedly lower fall RTE. 

The percentages of invalid test events in math and reading are shown, in Figures 4 

and 5, respectively.  Again, similar results were found for each content area.  There were 
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clear indications that effort was lower in the fall for virtually every school.  In math, the 

difference in the preponderance of invalid test events was as high as 8 percentage points.  

In reading, the difference for one school exceeded 11 percentage points.  These results 

suggest that lower fall effort was the norm rather than the exception in both math and 

reading. 

  

 

  

 The relationship between the fall-spring decrease in invalid test events and fall-

spring growth is shown in Figure 6 for math and in Figure 7 for reading.  In both content 

areas, there was an association between the two variables.   Each of the three schools 

exhibiting a decrease in invalid test events that exceeded 5 percentage points showed 
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above average growth in math.  Similarly, above average growth in reading was exhibited 

by all four of the schools showing at least a 5-point decrease in invalid test events. 

 The results shown in Figures 4-7 provide the clearest answer to the general 

research question that this case study was intended to answer (i.e., is there evidence of 

disparate fall-to-spring student effort that induced positive distortion on growth scores?).  

The finding that nearly all of the schools showed lower effort in the fall suggests that (a) 

there may be a general tendency of test givers to downplay the relative importance of fall 

testing or (b) students may be relatively unmotivated to devote strong test-taking effort 

early in an academic year.  Whichever explanation is more valid, the finding that the largest 

decreases in effort was associated with above average growth suggests that the degrees of 

differential fall-spring effort observed in these schools may have a meaningful impact on 

mean growth scores. 

 Demonstrating that differential effort can lead to positive distortion leads to a 

question regarding the degree to which this distortion biased the growth score estimates.  

Figures 8 and 9 show the impact on mean growth of deleting the scores from test events 

identified as invalid.  There is a negative relationship, particularly for math.  High degrees 

of differential effort appear to be associated with larger decreases in mean growth.  These 

findings support the claim that higher growth is due, at least in part, to higher differential 

effort. 

 It might be tempting to interpret the vertical scales in Figures 8 and 9 (change in 

mean growth) as indicators of the amount of distortion induced by differential effort for a 

given school.  There are, however, two caveats to consider.  First, Figures 8 & 9 show what 

would happen if the scores from invalid test events were deleted.  We do not know for 
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certain the degree to which the deleted scores were distorted by differential effort.  Second, 

we are not asserting that only the scores from deleted test events were subject to distortion.  

Our effort flagging criteria are conservative in detecting non-effort, which means that we 

will classify a test event as invalid only if there is clear evidence of non-effortful behavior 

(Wise & Ma, 2012).  This suggests the possibility of test events with lesser amounts of non-

effortful behavior that would be undetected by our criteria. 

  

 The data analyses from the case study illustrate that differential effort does appear 

to occur in practice at the school level, and that this induces meaningful amounts of 

positive distortion in growth scores.  This implies that test fraud could successfully be 

accomplished by test givers through a manipulation of the amount of relative effort 

students give to their fall and spring assessments. 

General Discussion 

 This paper introduced and discussed the concepts of test score distortion.  It was 

shown that most types of cheating (by either test givers or students) are intended to induce 

positive distortion on test scores, with the goal of overstating what students actually know 

and can do.  Negative distortion, in contrast, is generally caused by the influences of one or 
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more sources of construct-irrelevant variance that exert a negative bias on test scores.  

When student growth is considered, however, it is important to realize that positive 

distortion on growth scores could be induced through a negative distortion of Time 1 

scores through a manipulation of student effort. 

 How, specifically, could this be done?  Given the high-stakes nature of many 

assessments, it might appear difficult to lower a student’s test-taking effort.  It should be 

noted, however, that many assessments deemed “high-stakes” are actually “little-to-no-

stakes” from the perspective of the student.  For example, the scores from state 

assessments given according to the No Child Left Behind legislation have carried enormous 

consequences for school accountability.  From the student’s perspective, in comparison, the 

scores from these assessments have carried few personal consequences.  The student’s 

grades are unaffected by performance on the state assessment, and scores on the 

assessment usually are unavailable until months after the test event. 

 Given the absence of personal (i.e., external) consequences associated with many 

standardized assessments, one might reasonably turn the question around and ask why 

students give any effort to these assessments.  In the absence of personal consequences, a 

student’s test-taking motivation is driven by internal factors, such as a desire to please 

teachers and parents, academic citizenship, competitiveness, and ego satisfaction (Wise & 

Smith, 2011).  In this context, cues from the teacher about the importance of a particular 

test and the amount of effort expected from students can have a strong influence on the 

amount of subsequent effort that occurs.  Certainly, students are generally not eager to take 

tests, and it may require only subtle cues from the teacher that a test event is not highly 

important for them to decrease the amount of effort expended.  Teachers are used to 
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devoting a lot of time encouraging their students to give their best efforts to standardized 

assessments, and it require little more than inaction on their part during fall testing to 

induce a sizable positive distortion on fall-spring growth scores. 

 Nevertheless, it is important to consider what constitutes test fraud.  In this paper, 

test fraud means that someone acted intentionally to induce a positive distortion on test 

scores.  A teacher, however, who de-emphasizes the importance of fall assessment 

performance relative to the importance emphasized for spring testing may not view his 

actions as fraudulent.  A principal who encourages her teachers to view the fall testing 

merely as a baseline (consequently de-emphasizing its importance), and thereby indirectly 

diminishing test-taking effort might not view her actions as fraudulent.  But from the 

standpoint of score distortion, these actions constitute fraudulent behavior even if test 

givers do not view it as such. 

 Given the emerging emphasis of student growth data on teacher evaluations, it is 

likely that the problem discussed in this paper will emerge as a serious threat to the 

validity of inferences made about teacher performance.  Teachers will increasingly be 

tempted by the evaluative benefits of discouraging effort on fall assessments.  Moreover, 

teachers who would normally resist the temptation may adopt the practice anyway, 

because they believe that other teachers are doing so.  That is, they may be trying to re-

level what they perceive to be an uneven playing field.  The pervasive differential effort 

exhibited by schools in the case study may be evidence that this has occurred in the charter 

schools.  More research, however, is needed to understand the degree to which lower effort 

in fall testing is a naturally occurring phenomenon.  A better understanding of normative 
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student effort behavior will allow us to more clearly identify occasions when test givers 

have intentionally manipulated their students’ levels of effort.  

Recommended Solutions 

 Student growth data provides valuable information to teachers about the 

instructional needs of individual students.  That is its primary purpose.  When growth 

scores are also used to evaluate teacher effectiveness, there is a very real risk that test 

givers will attempt to distort the growth scores so as to put themselves in the best possible 

evaluative light.  In the process, however, they undermine the validity of the primary 

instructional use of the growth data.  It is therefore important that this threat to growth 

score validity be effectively addressed.  This can be done through a combination of 

detection, deterrence, and mitigation. 

 When a CAT is used, the five effort flagging criteria used in this paper can be useful 

in detecting scores that are invalid due to low ISV.  This would permit one to audit the 

results from a school or classroom.  If markedly lower effort was exhibited in the fall 

testing term, an investigation could be initiated into the causes of the discrepant effort, and 

whether or not those causes constitute test fraud.  If a non-adaptive CBT is used, then the 

three flagging criteria that are not based on score accuracy alone could be used to detect 

invalid scores—though probably not as effectively as when a CAT is used.  When paper-

and-pencil tests are used, it would be more difficult to detect low effort.  Post-test self-

report measures regarding effort might be used, but the validity of their scores might be 

questionable because it would be difficult to ascertain how truthfully students would 

respond.  This, then, represents an additional advantage of computer-based tests over 

paper-and-pencil tests. 
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 If procedures were put into place to detect differential effort, then test givers should 

be made aware of them, as well as of potential sanctions that could result from their 

occurrence.  The knowledge that differential effort could be detected should serve as a 

strong deterrent.  This awareness should be augmented with professional development for 

test givers that clearly defines this type of test fraud and what constitutes acceptable and 

unacceptable practices. 

 The remaining problem concerns how to effectively deal with instances of 

differential effort that do occur.  Simply deleting the growth scores based on invalid test 

events is unsatisfactory for two reasons.  First, we would like to get valid instructional 

information for as many students as possible, and deleted scores would not provide this 

information.  A second, more cynical reason is that the deletion of scores from invalid test 

events could lead to different fraudulent strategy.  A teacher may be motivated to 

selectively discourage effort only from the students who he believes are likely to show the 

lowest growth.  Strategic deletion of their data would provide an additional way for a 

teacher to inflate his students’ growth. 

 To mitigate the problem of low student effort, statistical methods may be useful in 

both salvaging growth scores for as many students as possible and in facilitating more valid 

assessment of teacher effectiveness.  Wise and DeMars (2006) investigated a, IRT-based 

method for adjusting scores for the effects of non-effortful test-taking behavior.  This 

method involves classifying each item response as solution behavior or a rapid guess, and 

basing proficiency estimation for a student only on solution behaviors (i.e., ignoring rapid 

guesses).  This method is based on the assumption that for a test event containing both 

solution behaviors and rapid guesses, the solution behaviors all reflect effortful behavior.  
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Bowe, Wise, and Kingsbury (2011) found evidence that this assumption does not always 

hold.  Thus, additional research is needed to develop methods for statistically managing the 

effects of low student effort on test scores. 
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Appendix 

Effort Flagging Criteria for Identifying Low ISV Scores 

When multiple-choice items are being administered, there are two types of 

behaviors that indicate a student who has become disengaged from his test and is 

exhibiting non-effortful test taking behavior.  First, he may respond to items very rapidly 

(i.e., faster than it should take him to read the item and thoughtfully consider the problem 

it poses).  Second, his answers may be correct at a rate that is consistent with what would 

be expected by chance through random guessing.  Rapid responses typically exhibit 

chance-level accuracy.  Additionally, however, chance-level accuracy can sometimes occur 

in the absence of rapid responding.  For these reasons, both response time and answer 

accuracy are used in the criteria for flagging MAP test events as exhibiting low ISV due to 

effort.   

Rapid-guessing behavior is identified using response time effort (RTE; Wise & Kong, 

2005), which is based on the conceptualization that each item response can be classified as 

reflecting either rapid-guessing behavior or solution behavior (Schnipke & Scrams, 1997, 

2002).  This classification is done using pre-established time thresholds for each item using 

the normative threshold method (Wise & Ma, 2012) set at 10 percent.  This means that the 

threshold for an item is set at 10 percent of the average time students have historically 

taken to answer the item.  RTE for a test event equals the proportion of the student’s 

responses that were solution behaviors.  This leads to the first effort flag: 

Flag A: If the student gave rapid guesses to at least 15% of the items (overall RTE ≤ .85). 
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Flag A specifies the amount of rapid-guessing behavior that can be tolerated over 

the entire test event.  Test-taking effort, however, is not all-or-none.  Students sometimes 

exhibit non-effort during only a portion of a test event.  This complicates the identification 

of non-effortful behavior, and the overall indicators may not be sensitive to detecting lesser 

degrees of non-effort.  For example, if a student gave good effort on the first 43 items of a 

50-item CAT and then gave rapid guesses to the remaining items, his non-effort on the last 

7 items would not be enough to trigger Flag A. 

One solution to this problem is to consider rolling subsets of the items from a test 

event.  For example, for subsets of size 10, we would consider items 1-10, then 2-11, then 

3-12, and so on, until the end of the test.  In general, for a k-item test and subsets of size r, 

there will be (k-r)+1 rolling subsets.  Using rolling subsets of size 10, we developed two 

additional RTE-based flags for considering low effort on a more local level: 

Flag B: If the student exhibited low RTE (local RTE ≤ .70) on at least 20% of the rolling 

subsets. 

 Item response time is useful for identifying rapid–guessing behavior.  Inspection of 

MAP data indicates, however, instances in which a student exhibited low accuracy in the 

absence of rapid guessing.  This suggests that some students can become disengaged from 

during a test event without resorting to rapid-guessing behavior.   

Low-accuracy responses should be evaluated carefully, because they could also be 

due to the student receiving items that were much too difficult for him.  In principle, this 

alternative explanation should not pose a problem for a CAT because the CAT algorithm 

strives to select and administer items that a given examinee has a .50 probability of 
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answering correctly (which requires that the item pool is capable of providing items that 

are well targeted to each student).  With MAP, however, it occasionally occurs that close 

targeting is not possible.  This tends to happen in lower grades for very low proficiency 

students, which means that items of low enough difficulty were not available to administer 

during those MAP test events2. 

Low accuracy responses should be used as indicators of low effort only if it is 

established that they were not due to poorly targeted items.  To accomplish this, a pool 

adequacy requirement is imposed specifying that low response accuracy will only be 

considered for test events in which at least 60% of the time during the CAT, the student 

received an item whose difficulty was no more than three RIT points away from the 

student’s momentary proficiency estimate3.  This led to the development of two additional 

flags related to response accuracy: 

Flag C: If the student passed fewer than 30% of the items (overall accuracy ≤ .30) and at 

least 60% of all of the administered items were within three RIT points of the student’s 

momentary proficiency estimate.  

Flag D: If the student exhibited low accuracy (local accuracy ≤ .20) on at least 20% of the 

rolling subsets and at least 60% of all of the administered items were within three RIT 

points of the student’s momentary proficiency estimate. 

                                                        
2
 MAP is usually administered to students several times each academic year and, once an item 

has been administered to a student, that item cannot be re-administered to the same student for 

24 months.  After multiple MAP administrations to low proficiency students, this can lead to a 

shortage of available closely targeted items. 
3
  The standard errors of student scores in math are typically about 3.0 RIT points, while those in 

reading are about 3.2 RIT points. 
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Finally, the joint occurrence of rapid responses and low accuracy on any of the 

rolling subsets was considered to be particularly indicative of low effort.  This led to the 

final effort flag: 

Flag E: If the student passed no more than two items (local accuracy ≤ .20) and gave three 

or more rapid guesses (local RTE ≤ .70) on any 10-item subset, and at least 60% of all 

of the administered items were within three RIT points of the student’s momentary 

proficiency estimate. 

In the effort analysis of MAP data, a student’s test event was classified as invalid on 

the basis of low ISV if any one of the five effort flags was triggered.   

 

 



The following table lists the supported hardware and software components for using the
Web-based MAP® system.

Important! Due to incompatibilities in hardware and software from third-party
vendors, computers with PowerPC® processors can no longer be used for
Web-based MAP testing after July 20, 2012.

In most cases, the requirements are the same for both the MAP Administration and Reporting
Center (MARC) and the MAP Student Testing Center (MSTC). Any differences are noted below.

Category PC Requirements Macintosh® Requirements

Operating systems and software

Operating system Microsoft® Windows XP® with Service
Pack 3, Windows Vista®, or Windows® 7

Mac OS® X v10.5, v10.6, or v10.7

Browser for MARC* Internet Explorer® 7, 8, or 9† or

Firefox® 13

Safari® 4, 5, or 5.1 or

Firefox 13

Browser for MSTC MAP lockdown browser# for PC with
Internet Explorer 7, 8, or 9

MAP lockdown browser# for Mac® with
Safari 4, 5, or 5.1

Multi-media player Adobe® Flash® Player 10.2 or higher

Reports viewer for MARC PDF viewer, such as Adobe Reader®

Computer hardware‡

Screen resolution 1024 x 768 minimum

Color depth 16-bit (32-bit recommended)

Peripherals Keyboard and mouse

Headphones for MAP for Primary Grades (MPG) testing

*MARC requires specific browser settings, such as allowing cookies and pop-ups for the MAP URL.
For details, see the System Administration Guide.
†Any Internet Explorer 9 issues with finding saved testing sessions may be resolved by enabling
Compatibility View.
#The MAP system requires a MAP lockdown browser for all testing. The lockdown browser reduces
distractions to students during testing by restricting access to other applications and Web sites.
‡Computer hardware components, such as the processor and RAM, must meet the requirements to run the software
listed above. Specifically, verify that the hardware meets the operating system and Adobe Flash Player requirements
listed on the Web sites of the respective software vendors.
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Bandwidth Availability
The key bandwidth requirement is available Internet bandwidth sufficient for adequate
system performance during student testing.

The most important bandwidth considerations are:

n Number of computers available for concurrent tests

n Number of students taking MAP for Primary Grades (MPG) tests during the scheduled test
window
Note: MPG tests require the most bandwidth.

n Bandwidth available through your main Internet connection

n Bandwidth available through any limitation points in your internal network (such as
school-to-district connections when the district has the main Internet connection)

The following table can help you determine the approximate bandwidth to allocate based on
the number of concurrent testers in your organization.

Students Testing Concurrently
Average Available Bandwidth Required*

MAP Tests MPG Tests†

50 0.15 Mbps 0.9 Mbps

100 0.3 Mbps 1.8 Mbps

250 0.75 Mbps 4.5 Mbps

500 1.5 Mbps 9 Mbps

1000 3 Mbps 18 Mbps

*The table identifies the average bandwidth in Megabits per second (Mbps) required to provide adequate performance
and avoid system time-outs during the question-and-answer portion of student tests.
†MPG tests require more bandwidth because they include audio support and additional interactive features for young
students. Since the grades taking MPG versus MAP tests may vary from term to term, the bandwidth requirements
may likewise vary.

Additional bandwidth is needed at the beginning of each test to load the initial test
questions and the question display software into cache in each computer’s browser. The
initial load is approximately 2.2 MB, and the load time varies based on available bandwidth.
As an example, with available bandwidth of 0.6 Mbps for a single student, the initial load
would take about 30 seconds.

To perform an Internet speed test, use a Web site such as www.speedtest.net and select
Portland, Oregon as the location. Perform the test multiple times from each location where
testing will take place, such as each school building. Test the speed at different times during
the school day to understand the variations in bandwidth availability based on staff and
student usage. Record the download speeds and use them to approximate your available
bandwidth during testing.

The bandwidth requirements listed in this section are subject to change. In addition, the
bandwidth you need may vary from one term to the next, and from year to year, based on
your testing plans.

© 2011—2012 Northwest Evaluation Association
Measures of Academic Progress, MAP, and DesCartes: A Continuum of Learning are registered trademarks of NWEA
in the United States or other countries. The names of other companies and their products mentioned in this
documentation are the trademarks of their respective owners.
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Measures of Academic Progress® (MAP®) Administration 
Technical Requirements: Client-Server MAP® 
The following technical requirements for MAP testing have been created as a guide to ensure that you have a 
successful testing experience with your students. Please review the following information as you assess your 
technology and plan for conducting these assessments.  

Your technology will need to support these major components:  

 The Network Test Environment (NTE) folder 

 One or more NTE Administration Workstations  

 TestTaker Client Workstation 

 Northwest Evaluation Association™ (NWEA™) Reports Site 

 Wireless Requirements (Optional) 

Network Test Environment (NTE) Folder Server 
The NTE Folder is a folder that stores and hosts student and test database information. Students will use the 
TestTaker application to interact with the NTE folder—TestTaker gets test questions from the NTE, and sends 
each unique student response back to the NTE for recording along with other measurement data. The NTE 
Folder is a folder that can exist on any shared network resource accessible to the local user accounts on the 
testing workstations. Please note: It is strongly recommended that the NTE folder be hosted on server-class 
hardware in the same physical building and on the same local network as the TestTaker client workstations. 
The quality of connectivity between the server and the workstations, as well as the specifications of the server 
hosting the NTE (including the CPU, RAM, and available disk space) all contribute to the overall test-system 
performance. The minimum system requirements for the NTE Server are:  

Minimum NTE Server Requirements 

CPU Pentium® II (266MHz) 1. These requirements assume the 
NTE server is dedicated to MAP 
while testing is in progress.  

2. Server hardware should include 
256MB RAM per lab or class of 30 
TestTaker client workstations. 
 

3. Some tests require audio that can 

RAM 256 MB 

Available Disk 
Space 

600 MB (1.5 GB for MPG Audio) 

Operating System* Novell® 4.0; Mac® OS X® Server 10.4 or 
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Minimum NTE Server Requirements 

higher;  
Windows® 2000 Server;  
Windows 2000 Advanced Server;  
Windows Server 2003 
Windows Server 2008 

be downloaded independently from 
the test.  

4. Operating systems should be 
server-class operating systems. 
Using desktop systems in a server 
role can dramatically reduce 
performance and may limit the 
number of concurrent connections 
allowed1.  

5. Earlier AppleShare versions do not 
support enough open shares for 
MAP system usability.  

Network Windows 2000 Server; Mac using SMB;  
Mac G3 (with AppleShare® 6.3) 
Novell 4.0; Mac using AFP 

Anti-Virus Any anti-virus package must have an 
exclusion to prevent it from actively scanning 
any NTE folder during testing.  

*OS X version 10.7.3 or higher is required for NTE data hosted on OS X Lion (10.7) servers 

NTE Admin 2 Workstation 
The Network Test Environment (NTE) Admin 2 software is a Windows-based application used to perform the 
download and upload of tests, test results and student data to and from the NTE folder. The NTE Admin 2 
workstation must have Internet access, and the local Windows account used to run NTE Admin 2 must have 
Read and Write access to all files and subfolders of the NTE folder. Additionally, the NTE Admin 2 software 
requires the Microsoft® .NET Framework (version 4 or higher) to be installed. If your computer does not 
already have the .NET Framework, you will be prompted to install it automatically. The minimum system 
requirements for running NTE Admin 2 are: 

NTE Admin 2 Workstation Requirements 

CPU 1GHz  

RAM 512MB 

Operating System Windows XP SP3 
Windows Vista® SP1 or later 
Windows 7 
Windows Server® 2003 SP2 
Windows Server 2008 (not supported on Server Core Role) 
Windows Server 2008 R2 (not supported on Server Core Role) 
Windows Server 2008 R2 SP1 

  
                                                   
1 Non-server versions of Microsoft Windows limit user connections to 10-20. 



MAP® Administration Technical Requirements: Client-Server MAP® 
Revised 7/2012 
©2012 Northwest Evaluation Association™ NWEA.org 3 of 4 

TestTaker Client Workstation 
All NWEA assessments are presented to students using TestTaker. The TestTaker application can be installed 
locally on testing workstations, or on a Windows-based server. In the case of server-based installations, 
Windows-based clients can be given a shortcut that points to the TestTaker installation on the server. 
Macintosh clients must have the TestTaker application locally installed. The table below lists the minimum 
TestTaker client workstation system requirements for optimal performance. TestTaker may work on other 
configurations, however, NWEA has not tested all possible configurations and recommends following these 
guidelines whenever possible. If you are planning on using an untested configuration, NWEA strongly 
recommends you spend some time evaluating if the software will operate reliably on that configuration.  

Minimum TestTaker Client Workstation Requirements 

CPU Pentium II (266MHz); Mac G4 

RAM 256MB 

Operating System Windows 2000; Windows XP; Windows Vista; Windows 7; Mac OS X 10.5 – 10.7 

Network Windows 2000 Server; Novell 4.0; Mac using AFP 2.x-3.x 

Available Disk Space 70 MB 

Screen Resolution Preferred: 1024 x 768 
Minimum: 800 x 600 

Mac Fonts Mac systems must have Courier and Symbol fonts installed.  
For the correct display of MAP for Primary Grades tests, font smoothing must be 
enabled for all Mac systems used as TestTaker client workstations (see 
www.nwea.org/mpginfo for more information). 

Adobe® Flash® A custom version of Adobe Flash is embedded within TestTaker. Most MAP 
assessments use this embedded version; therefore, Adobe Flash must not be 
blocked on the network or client machines. 

Sound Card Required (for MAP for Primary Grades only) 

Headphones Required (for MAP for Primary Grades only) 

Permissions Each client accessing the installation must have full read/write/create 
permissions set to the NTE. 

TestTaker Version MAP assessments require the use of TestTaker version 8.0 or later.  

 

  

http://www.nwea.org/mpginfo
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Wireless Recommendations (Optional)  
The following are the minimum recommendations for testing in a wireless environment (LAN only) and 
assume no other activity on a wireless access point. NWEA requires a persistent connection to the wireless 
access point, free of interruptions, to successfully run TestTaker. Any outages in the connections, regardless of 
how brief, may cause errors during testing or require re-testing particular students. 

Wireless Requirements  
Wireless Standard 802.11 G (54 mb/s) or higher 
# concurrent 
connections 

12-15 connections per wireless access point (20 max) 

NWEA™ Reports Site 
The NWEA Reports site is a web portal providing access to NWEA assessment tools that includes Descartes: A 
Continuum of Learning®, Primary Grades Instructional Data, Dynamic Reporting Suite (DRS), classroom resources, 
growth reports, and operational reports. The Reports site is not browser specific to view online reports, 
however for optimal viewing NWEA recommends the following guidelines:  

NWEA™ Reports Site Requirements 

Browser In order to upload files, you must use Internet Explorer® as the upload 
functionality leverages IE’s secure transfer of files. However, the following 
browsers support browsing the NWEA Reports Site:  

 Internet Explorer  
 Mozilla Firefox® 
 Safari® 

Crystal Reports End of Term reports that contain assessment results from the district and school-
level can be accessed using the Crystal Reports Viewer. This  
viewer is designed to run on a Windows OS®, and can be downloaded from the 
NWEA Reports Site.   
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