END OF COURSE
ALGEBRA I

Form M0119, CORE 1

This released test contains 3 fewer test items (#1-47 only) than an original SOL EOC Algebra I test.
Algebra I Formula Sheet

Geometric Formulas

\[V = \frac{1}{3} \pi r^2 h \]
\[S.A. = \pi r(l + r) \]

\[V = lwh \]
\[S.A. = 2(lw + lh + wh) \]

\[V = \frac{1}{3} Bh \]
\[S.A. = \frac{1}{2} lp + B \]

\[p = 4s \]
\[A = s^2 \]

\[p = 2(l + w) \]
\[A = lw \]

\[A = \frac{1}{2} h(b_1 + b_2) \]

\[A = \pi r^2 \]

\[C = 2\pi r \]

\[c^2 = a^2 + b^2 \]

Abbreviations

<table>
<thead>
<tr>
<th>Milligram</th>
<th>Mg</th>
<th>Ounce</th>
<th>Oz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram</td>
<td>G</td>
<td>Pound</td>
<td>Lb</td>
</tr>
<tr>
<td>Kilogram</td>
<td>Kg</td>
<td>Quart</td>
<td>Qt</td>
</tr>
<tr>
<td>Milliliter</td>
<td>mL</td>
<td>Gallon</td>
<td>Gal.</td>
</tr>
<tr>
<td>Liter</td>
<td>L</td>
<td>Inch</td>
<td>In.</td>
</tr>
<tr>
<td>Kiloliter</td>
<td>kL</td>
<td>Foot</td>
<td>Ft</td>
</tr>
<tr>
<td>Millimeter</td>
<td>mm</td>
<td>Yard</td>
<td>Yd</td>
</tr>
<tr>
<td>Centimeter</td>
<td>cm</td>
<td>Mile</td>
<td>Mi.</td>
</tr>
<tr>
<td>Meter</td>
<td>M</td>
<td>Square Inch</td>
<td>Sq In.</td>
</tr>
<tr>
<td>Kilometer</td>
<td>Km</td>
<td>Square Foot</td>
<td>Sq Ft</td>
</tr>
<tr>
<td>Square Centimeter</td>
<td>Cm^2</td>
<td>Cubic Inch</td>
<td>Cu In.</td>
</tr>
<tr>
<td>Cubic Centimeter</td>
<td>Cm^3</td>
<td>Cubic Foot</td>
<td>Cu Ft</td>
</tr>
</tbody>
</table>

Volume	V	Year	Yr
Total Surface Area	S.A.	Month	Mon
Area of Base	B	Hour	Hr
Minute	Min	Second	Sec

Pi

\[\pi \approx 3.14 \]
\[\pi \approx \frac{22}{7} \]

Quadratic Formula

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
SAMPLE

If $f(x) = x^2 + 2x + 3$, what is the value of $f(x)$ when $x = 6$?

A 27
B 42
C 51
D 60
1. What is the solution to the inequality below?

\[2x - 7 \geq 15 \]

A. \(x \leq 8 \)
B. \(x \geq 8 \)
C. \(x \leq 11 \)
D. \(x \geq 11 \)

2. Which number is a zero of the function \(f \)?

\[f(x) = x^2 - x - 6 \]

F. 0
G. 2
H. 3
J. 6

3. If \(2n = 6 \), what property of equality justifies writing

\[p + 2n = 4p + 15 \]

as \(p + 6 = 4p + 15 \)?

A. Addition property
B. Transitive property
C. Symmetric property
D. Substitution property
4. The equation $y = 3x$ is shown on the graph below.

Which is most likely the graph of $y = 3x + 2$?

- F
- G
- H
- J
5 What is the slope of the line represented by the following equation?

\[y = 2x - 1 \]

A 1
B 2
C 1
D 2

6 Kristen heard that it is 82° Fahrenheit outside. She knows that

\[F = \frac{9}{5}C + 32, \]

where \(F \) represents the temperature in degrees Fahrenheit and \(C \) represents the temperature in degrees Celsius. Which is closest to the temperature outside, in degrees Celsius?

F 28
G 63
H 90
J 180
7 What is the solution to the system of linear equations below?

\[
\begin{align*}
 x + y &= 5 \\
x - y &= 3
\end{align*}
\]

A (8, -3)
B (6, -1)
C (5, 2)
D (4, 1)

8 Which equation best describes the line whose graph is shown?

F \(y = x + 3 \)
G \(y = 3x \)
H \(y = 3 \)
J \(x = 3 \)
Which graph best represents the following inequality?

\[y \leq -\frac{1}{3}x + 2 \]
10 Candice plotted the points (2, 15) and (0, -1) and then drew a line through these two points. What is the slope of the line she drew?

F \(\frac{1}{8} \)

G \(\frac{1}{7} \)

H 7

J 8

11 Which of the following is the solution set to the equation \(x^2 - 3x - 28 = 0 \)?

A \{ -28, 1 \}

B \{ -4, 7 \}

C \{ -2, 14 \}

D \{ 0, 28 \}
12 Ralph spent $132 to buy movie tickets for 20 students and 4 adult chaperones. Adult tickets cost $3 more than student tickets. If A is the price of an adult ticket and S is the price of a student ticket, which system of equations could be used to find the price of each adult and student ticket?

F

\[
\begin{align*}
S &= A + 3 \\
4A + 20S &= 132
\end{align*}
\]

G

\[
\begin{align*}
A &= S + 3 \\
4A + 20S &= 132
\end{align*}
\]

H

\[
\begin{align*}
A + S &= 3 \\
20A + 4S &= 132
\end{align*}
\]

J

\[
\begin{align*}
A &= S + 3 \\
A + S &= 132
\end{align*}
\]

13 What is the slope of the line represented by the following equation?

\[4x - y + 3 = 0\]

A -1

B $\frac{3}{4}$

C $\frac{4}{3}$

D 4
14 Which is an equation of the line that passes through the points (5, 15) and (10, 20)?

F \(y = x + 10 \)

G \(y = x - 30 \)

H \(y = x + 30 \)

J \(y = x + 15 \)

15 What is the solution of the system of equations shown?

\[
\begin{align*}
2x + 5y &= 8 \\
6x + 4y &= -20
\end{align*}
\]

A \((-6, 4)\)

B \((6, -14)\)

C \((14, -4)\)

D \((-6, -4)\)

16 What is the solution to the following equation?

\[3(x + 5) - 10 = -2(x + 10)\]

F \(-7\)

G \(-5\)

H \(1\)

J \(3\)
17 Which is an equation of a line with a slope of 3 that passes through the origin?
 A \(x = 3 \)
 B \(y = 3 \)
 C \(x = 3y \)
 D \(y = 3x \)

18 Which of the following equals \(3x^2 - 10x - 8 \) when factored completely?
 F \((3x - 4)(x + 2) \)
 G \((3x - 1)(x + 8) \)
 H \((3x + 8)(x - 1) \)
 J \((3x + 2)(x - 4) \)

19 What is \(\sqrt{192} \) expressed in simplest radical form?
 A \(8\sqrt{3} \)
 B \(6\sqrt{5} \)
 C \(4\sqrt{12} \)
 D \(2\sqrt{48} \)
20 What is the value of the expression $3(x + 4) - 2y$, if $x = 5$ and $y = -3$?

- F -7
- G 11
- H 21
- J 33

21 What is the value of the expression $\frac{1}{4}(x^2 - y^3)$ when $x = 5$ and $y = 1$?

- A $\frac{7}{4}$
- B $\frac{11}{2}$
- C 6
- D 31

22 Which expression is equivalent to $3x^2(4x^2 + 2x + 1)$?

- F $7x^2 + 5x + 4$
- G $7x^4 + 5x^3 + 4x^2$
- H $12x^2 + 6x + 3$
- J $12x^4 + 6x^3 + 3x^2$
Based on the models for x^2, x, and 1, which product is represented by the diagram?

A. $(x + 1)(x + 3)$

B. $(2x + 3)(x + 1)$

C. $(2x^2 + 3)(x + 1)$

D. $(x^2 + x)(2x^2 + 3x)$

24 Which labeled point on the number line is closest to the square root of 85?

F. W

G. X

H. Y

J. Z
25 Which polynomial is equivalent to the following expression?

\[(3x^2 - 2x + 5) - (2x^2 - 5x + 1)\]

A \(x^2 + 3x + 4 \)
B \(x^2 - 7x + 6 \)
C \(x^2 - 3x - 6 \)
D \(x^2 - 7x + 4 \)

26 Which of the following is equivalent to \(\frac{x^4y^3}{x^3y^4} \)?

F \(\frac{x}{y} \)
G \(\frac{y}{x} \)
H \(xy \)
J \(x^7y^7 \)

27 A factored form of \(x^2 + 5x - 24 \) is —

A \((x - 4)(x + 6) \)
B \((x - 3)(x + 8) \)
C \((x - 2)(x + 12) \)
D \((x - 6)(x + 4) \)
28 Which is equivalent to the following expression?

\[(-2xy)^3 \]

- F \(-2xy^3\)
- G \(-2x^3y^3\)
- H \(-6x^3y^3\)
- J \(-8x^3y^3\)

29 The length of a certain rectangle is six more than three times its width. If the width of the rectangle is 4 units, what is its length?

- A 10
- B 13
- C 18
- D 27
30 Which of the following graphs shows a direct variation?
31 Which graph apparently represents a function of \(x \)?
32 If \(f(x) = \frac{\sqrt{9-x}}{4} \) what is \(f(5) \) ?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>(\frac{3 - \sqrt{5}}{4})</td>
</tr>
<tr>
<td>G</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>H</td>
<td>(\frac{\sqrt{14}}{4})</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
</tr>
</tbody>
</table>
33 What is the range of the function shown?

A $-2 \leq x \leq 7$
B $-3 \leq x \leq 6$
C $-2 \leq y \leq 7$
D $-3 \leq y \leq 6$
34 The table gives the cost for different numbers of 100-sheet notebooks. The cost, \(C \), varies directly as the number of notebooks, \(n \).

<table>
<thead>
<tr>
<th>Number of notebooks ((n))</th>
<th>Cost ((C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$4.30</td>
</tr>
<tr>
<td>4</td>
<td>$8.60</td>
</tr>
<tr>
<td>6</td>
<td>$12.90</td>
</tr>
<tr>
<td>8</td>
<td>$17.20</td>
</tr>
</tbody>
</table>

Which equation represents the relationship shown in the table?

F \[C = \frac{2.15}{n} \]

G \[C = 4.30n \]

H \[C = 2.15n \]

J \[C = 2.15 + n \]

35 A function of \(x \) consists of five ordered pairs of the form \((x, y)\). Four of the ordered pairs are shown below.

\[(1, 9), (3, 19), (5, 29), (7, 39)\]

Which could be the 5th ordered pair of the function?

A (9, 8)

B (1, 49)

C (5, 19)

D (3, 9)
36 The number of miles, \(m \), a car can travel varies directly with the amount of gas, \(g \), in its fuel tank. If \(k \) is the constant of variation, which equation represents that situation?

\[
\begin{array}{ll}
F & m = \frac{k}{g} \\
G & m = \frac{g}{k} \\
H & m = kg \\
J & m = g + k
\end{array}
\]

37 The function \(f(x) = 1200 - 50x \) gives the distance left to travel after driving \(x \) hours. What is \(f(9) \), the distance left to travel after driving 9 hours?

\[
\begin{array}{ll}
A & 450 \text{ miles} \\
B & 691 \text{ miles} \\
C & 750 \text{ miles} \\
D & 850 \text{ miles}
\end{array}
\]

38 Which is a zero of the function defined by the following equation?

\(f(x) = x(x + 2) \)

\[
\begin{array}{ll}
F & -2 \\
G & -1 \\
H & 1 \\
J & 2
\end{array}
\]
39 The relationship shown in the table is a direct variation.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

Which equation best represents this relationship?

A \[y = 4x - 5 \]

B \[y = x + 10 \]

C \[y = 3x \]

D \[y = \frac{1}{3}x \]

40 Which of the following represents the domain of the relation shown?

F \{A, B, C, D\}

G \{A, B, 150, 250\}

H \{150, 250, 350, 450\}

J \{A, 150, B, 250, C, 350, D, 450\}
Christy and Claire take piano lessons. Their practice times for the past week are shown in the matrix.

\[
\begin{bmatrix}
20 & 10 & 15 & 20 \\
0 & 5 & 15 & 30
\end{bmatrix}
\]

Which matrix could represent the new practice schedule if their teacher wants them to practice twice as much this week?

A \[
\begin{bmatrix}
10 & 5 & 7.5 & 10 \\
0 & 2.5 & 7.5 & 15
\end{bmatrix}
\]

B \[
\begin{bmatrix}
40 & 20 & 30 & 40 \\
0 & 5 & 15 & 30
\end{bmatrix}
\]

C \[
\begin{bmatrix}
40 & 20 & 30 & 40 \\
0 & 10 & 30 & 60
\end{bmatrix}
\]

D \[
\begin{bmatrix}
22 & 12 & 17 & 22 \\
2 & 7 & 17 & 32
\end{bmatrix}
\]
42 \[
\begin{bmatrix}
1 & 7 \\
6 & 3
\end{bmatrix}
-
\begin{bmatrix}
4 & -8 \\
2 & -1
\end{bmatrix}
= F
\]
\[
\begin{bmatrix}
3 & 15 \\
-4 & 4
\end{bmatrix}
\]
\[
G
\begin{bmatrix}
3 & 15 \\
4 & 4
\end{bmatrix}
\]
\[
H
\begin{bmatrix}
-4 & 56 \\
-12 & 3
\end{bmatrix}
\]
\[
J
\begin{bmatrix}
-3 & -1 \\
4 & 2
\end{bmatrix}
\]

43 This table shows the wind chill at 40°F for various wind speeds.

<table>
<thead>
<tr>
<th>Wind Speed (miles per hour), (s)</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Chill (°F), (t)</td>
<td>36</td>
<td>34</td>
<td>32</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>25</td>
</tr>
</tbody>
</table>

Which equation most closely represents a line of best fit for the data?

A \(t = -0.2s + 35 \)

B \(t = 0.2s - 35 \)

C \(t = -35s + 0.2 \)

D \(t = 35s - 0.2 \)
44 Which matrix is equivalent to \[
\begin{bmatrix}
6 \\
-3 \\
-9
\end{bmatrix}
\]?

\[
F = \begin{bmatrix}
2 \\
-1 \\
-3
\end{bmatrix}
\]

\[
G = \begin{bmatrix}
18 \\
-3 \\
-9
\end{bmatrix}
\]

\[
H = \begin{bmatrix}
18 \\
-9 \\
-27
\end{bmatrix}
\]

\[
J = \begin{bmatrix}
6 \\
-9 \\
-9
\end{bmatrix}
\]
45 The chart below shows the scores for each of the first 10 basketball games for the Hawks and the Blue Jays.

<table>
<thead>
<tr>
<th>Hawks</th>
<th>Blue Jays</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>93</td>
<td>103</td>
</tr>
<tr>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>93</td>
<td>76</td>
</tr>
<tr>
<td>82</td>
<td>91</td>
</tr>
<tr>
<td>81</td>
<td>95</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>87</td>
<td>95</td>
</tr>
<tr>
<td>98</td>
<td>95</td>
</tr>
</tbody>
</table>

Which of the following is true?

A The mode for the Hawks is less than the mode for the Blue Jays.
B The mean for the Blue Jays is less than the mean for the Hawks.
C The median for the Hawks is greater than the median for the Blue Jays.
D The range for the Hawks is greater than the range for the Blue Jays.
Easy Street Deli serves sandwiches with 3 choices of bread and 3 choices of meat. The tables show the number of each type of sandwich sold on Monday and Tuesday.

Monday

<table>
<thead>
<tr>
<th></th>
<th>White Bread</th>
<th>Wheat Bread</th>
<th>Rye Bread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham</td>
<td>41</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>Roast Beef</td>
<td>29</td>
<td>56</td>
<td>21</td>
</tr>
<tr>
<td>Turkey</td>
<td>50</td>
<td>30</td>
<td>28</td>
</tr>
</tbody>
</table>

Tuesday

<table>
<thead>
<tr>
<th></th>
<th>White Bread</th>
<th>Wheat Bread</th>
<th>Rye Bread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham</td>
<td>56</td>
<td>70</td>
<td>34</td>
</tr>
<tr>
<td>Roast Beef</td>
<td>67</td>
<td>54</td>
<td>40</td>
</tr>
<tr>
<td>Turkey</td>
<td>50</td>
<td>32</td>
<td>29</td>
</tr>
</tbody>
</table>

Which matrix shows the difference between the number of different sandwiches sold on Tuesday and the number sold on Monday?

- **F**

 \[
 \begin{bmatrix}
 21 \\
 55 \\
 3
 \end{bmatrix}
 \]

- **G**

 \[
 \begin{bmatrix}
 15 & 15 & -9 \\
 38 & -2 & 19 \\
 0 & 2 & 1
 \end{bmatrix}
 \]

- **H**

 \[
 \begin{bmatrix}
 97 & 125 & 77 \\
 96 & 110 & 61 \\
 100 & 62 & 57
 \end{bmatrix}
 \]

- **J**

 \[
 \begin{bmatrix}
 15 & 15 & 9 \\
 38 & 2 & 19 \\
 0 & 2 & 1
 \end{bmatrix}
 \]

The male and female teachers at Mountainview School recorded the number of years they have been teaching at the school. The box-and-whisker plots summarize the data.

Which statement is **false**?

A The teacher with the least number of years teaching is female.
B The range in the years teaching is greater for male teachers than for female teachers.
C The difference in the maximum number of years teaching for male and female teachers is 1.
D The median number of years teaching for female teachers is 2 less than the median for male teachers.
<table>
<thead>
<tr>
<th>Test Sequence Number</th>
<th>Correct Answer</th>
<th>Reporting Category</th>
<th>Reporting Category Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>16</td>
<td>G</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>003</td>
<td>Equations and Inequalities</td>
</tr>
<tr>
<td>18</td>
<td>J</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>19</td>
<td>A</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>20</td>
<td>J</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>22</td>
<td>J</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>24</td>
<td>H</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>26</td>
<td>F</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>27</td>
<td>B</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>28</td>
<td>J</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>001</td>
<td>Expressions and Operations</td>
</tr>
<tr>
<td>30</td>
<td>J</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>32</td>
<td>G</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>33</td>
<td>D</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>34</td>
<td>H</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>35</td>
<td>A</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>36</td>
<td>H</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>37</td>
<td>C</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>38</td>
<td>F</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>39</td>
<td>C</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>40</td>
<td>F</td>
<td>002</td>
<td>Relations and Functions</td>
</tr>
<tr>
<td>41</td>
<td>C</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>42</td>
<td>G</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>43</td>
<td>A</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>44</td>
<td>H</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>45</td>
<td>A</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>46</td>
<td>G</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>47</td>
<td>B</td>
<td>004</td>
<td>Statistics</td>
</tr>
<tr>
<td>If you get this many items correct:</td>
<td>Then your converted scale score is:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>328</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>341</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>352</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>362</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>367</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>406</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>468</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>560</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>