END OF COURSE GEOMETRY

Form M0110, CORE 1
Geometry Formula Sheet

Geometric Formulas

Volumes
- **Cylinder:** $V = \pi r^2 h$
- **Cone:** $V = \frac{1}{3} \pi r^2 h$
- **Sphere:** $V = \frac{4}{3} \pi r^3$
- **Rectangular Solid:** $V = lwh$
- **Triangular Prism:** $V = \frac{1}{2} bh$ (lateral area) $V = \frac{1}{2} lh$ (total surface area)

Areas
- **Triangle:** $A = \frac{1}{2} bh$
- **Parallelogram:** $A = bh$
- **Trapezoid:** $A = \frac{1}{2} (b_1 + b_2) h$
- **Circle:** $A = \pi r^2$

Abbreviations
- **Volume** V
- **Lateral Area** $L.A.$
- **Total Surface Area** $S.A.$
- **Area of Base** B

Geometric Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\triangle ABC$</td>
<td>triangle ABC</td>
</tr>
<tr>
<td>$\Box ABCD$</td>
<td>rectangle $ABCD$</td>
</tr>
<tr>
<td>$\square ABCD$</td>
<td>parallelogram $ABCD$</td>
</tr>
<tr>
<td>$\angle A$</td>
<td>angle A</td>
</tr>
<tr>
<td>$m \angle A$</td>
<td>measure of angle A</td>
</tr>
<tr>
<td>\overrightarrow{AB}</td>
<td>line segment AB</td>
</tr>
<tr>
<td>$\overrightarrow{AB} \parallel \overrightarrow{CD}$</td>
<td>line AB is parallel to line CD</td>
</tr>
<tr>
<td>$\overrightarrow{AB} \perp \overrightarrow{CD}$</td>
<td>line AB is perpendicular to line CD</td>
</tr>
<tr>
<td>$\angle A \cong \angle B$</td>
<td>angle A is congruent to angle B</td>
</tr>
<tr>
<td>$\Delta A \sim \Delta B$</td>
<td>Triangle A is similar to triangle B</td>
</tr>
</tbody>
</table>

Pi
- $\pi \approx 3.14$
- $\pi \approx \frac{22}{7}$
Read each question and choose the best answer.

SAMPLE

If $\triangle ABC$ is similar to $\triangle ADE$, then $AB : AD = ? : AE$. Which replaces the “?” to make the statement true?

A AC
B AE
C DE
D BC
1 A bisector of \(\overline{AB} \) contains which line segment?

- \(\overline{CG} \)
- \(\overline{DF} \)
- \(\overline{DG} \)
- \(\overline{EF} \)
2. Lines \(m \) and \(r \) are cut by a transversal.

\[(3x - 35)° \]

\[(7x - 115)° \]

What value of \(x \) will show that line \(m \) is parallel to line \(r \)?

- F 20
- G 24
- H 25
- J 33

3. If lines \(a \) and \(b \) are parallel, what is the value of \(x \)?

- A 120
- B 115
- C 65
- D 60
4. Which point lies on the bisector of angle PQR?

- F W
- G X
- H Y
- J Z

5. For what measure of $\angle D$ is $\overline{AB} \parallel \overline{DC}$ in this figure?

- A 26°
- B 59°
- C 69°
- D 95°
Which line segment is congruent to \overline{BC}?

F \overline{PQ}

G \overline{PR}

H \overline{PS}

J \overline{PT}
In the figure shown, line \(q \) is a transversal of parallel lines \(l, m, n, \) and \(p \).

What are the values of \(x \) and \(y \) ?

A \(x = 30, \ y = 30 \)
B \(x = 30, \ y = 150 \)
C \(x = 150, \ y = 30 \)
D \(x = 150, \ y = 150 \)
8 In the figure shown, parallel lines j and k are cut by transversal m.

What is $m\angle 1$?

F 32°
G 58°
H 122°
J 148°
9 Lines y and z are cut by a transversal.

For what value of x is $y \parallel z$?

A 13
B 77
C 103
D 154
10 In this figure, $m\angle 1 = (15x - 5)^\circ$ and $m\angle 2 = (10x + 35)^\circ$.

What is $m\angle 1$?

F 31°
G 65°
H 85°
J 115°

11 This figure represents line segments painted on a parking lot to create parking spaces.

Which equation can be used to show that these line segments are parallel?

A $118 - w = x$
B $118 - x = w$
C $x + 118 = 180$
D $w + 118 = 180$
12 Given: \(\triangle ABC \sim \triangle LMN \)

What is the length of \(\overline{AC} \)?

F 11
G 12
H 22
J 24

13 Given the following measures of the sides of triangles, which is a right triangle?

A 41 cm, 40 cm, 9 cm
B 45 ft, 40 ft, 35 ft
C 52 in., 50 in., 11 in.
D 45 yd, 35 yd, 25 yd
Which of the following statements must be true about this Venn diagram?

F All rectangles are rhombi.
G Some rhombi are rectangles.
H Quadrilaterals are not rhombi or rectangles.
J All quadrilaterals are rhombi and rectangles.
15 Given: In this figure, \(\overline{AC} \) and \(\overline{BD} \) bisect each other.

Based on the information given, which triangle congruence theorem could be used to prove \(\triangle AED \cong \triangle CEB \) ?

A Angle-Angle-Side (AAS)
B Angle-Side-Angle (ASA)
C Side-Angle-Side (SAS)
D Side-Side-Side (SSS)

16 Statement: *If lines are skew, then they are not coplanar.*

What is the contrapositive of the statement?

F If lines are not coplanar, then they are skew.
G If lines are not skew, then they are coplanar.
H If lines are coplanar, then they are not skew.
J If lines are skew, then they are coplanar.
17 Coordinates $A(2, 5)$, $B(6, 4)$, and $C(6, 0)$ are connected to form $\triangle ABC$.

If $\triangle CDA$ is congruent to $\triangle ABC$, what are the coordinates of D?

A $(1, 1)$
B $(1, 2)$
C $(2, 2)$
D $(2, 1)$
18 Let $p = \text{An equation is of the form } y = mx + b$. Let $q = \text{Its graph is a line.}$

Argument: If an equation is of the form $y = mx + b$, then its graph is a line. The graph is not a line. Therefore, the equation is not of the form $y = mx + b$.

Which of the following is the symbolic representation of the given argument?

F

\[
\begin{align*}
p & \rightarrow q \\
\sim q & \\
\therefore \sim p
\end{align*}
\]

G

\[
\begin{align*}
p & \rightarrow q \\
q & \\
\therefore p
\end{align*}
\]

H

\[
\begin{align*}
p & \rightarrow q \\
\sim p & \\
\therefore \sim q
\end{align*}
\]

J

\[
\begin{align*}
p & \rightarrow q \\
p & \\
\therefore q
\end{align*}
\]
19 \(\triangle TRG \) is a right triangle.

Which is closest to the length of \(\overline{RT} \) ?

A 5
B 11
C 14
D 28
Which list has the sides of \(\triangle ABC \) ordered from longest to shortest?

- **F** \(\overline{BC}, \overline{AC}, \overline{AB} \)
- **G** \(\overline{AB}, \overline{AC}, \overline{BC} \)
- **H** \(\overline{AC}, \overline{AB}, \overline{BC} \)
- **J** \(\overline{BC}, \overline{AB}, \overline{AC} \)

21 Three survey markers are located on a map at points \(H, I, \) and \(J \). A triangle is formed by connecting these markers by string so that \(HI = 150 \) feet, \(HJ = 245 \) feet, and \(IJ = 365 \) feet.

Which statement is true about the measures of the angles of \(\triangle HIJ \)?

- **A** \(\angle H \) is the smallest
- **B** \(\angle H \) is the largest
- **C** \(\angle I \) is the smallest
- **D** \(\angle I \) is the largest
In the figure, what is the value of x?

F 6
G $6\sqrt{2}$
H $6\sqrt{3}$
J 12

23 Two sides of a triangle measure 14 inches and 8 inches. Which cannot be the length of the remaining side?

A 6 in.
B 8 in.
C 14 in.
D 21 in.
In the circle, what is the measure of \(\angle ABC \)?

F 30°
G 60°
H 120°
J 140°

25 This figure shows a pattern of triangles and regular hexagons.

What is the value of \(x \)?

A 30
B 60
C 90
D 120
26. Which figure has all sides of equal measure but not necessarily all angles of equal measure?

- F Square
- G Rectangle
- H Rhombus
- J Trapezoid

27. What is $m\angle DAR$ in circle A?

- A 17°
- B 34°
- C 56°
- D 68°
28 Two chords intersect with the measures shown in the drawing.

What is the value of x?

- F 8.0
- G 9.5
- H 10.0
- J 14.5

29 In rectangle $ABCD$, the slope of AB is $\frac{1}{2}$. What is the slope of CD?

- A -2
- B $-\frac{1}{2}$
- C $\frac{1}{2}$
- D 2
30 In the figure shown, what is \(m \angle WXY \) ?

\[
\begin{align*}
Y & \quad 62^\circ \\
X & \quad Z \\
\end{align*}
\]

- F 45°
- G 107°
- H 120°
- J 135°

31 \(DEFG \) is a rhombus with \(m \angle EFG = 28^\circ \).

What is \(m \angle GDE \) ?

- A 14°
- B 28°
- C 30°
- D 56°
32 This figure is a traffic sign in the shape of a regular octagon.

![Stop Sign](image)

What is the value of x ?

- **F** 45
- **G** 60
- **H** 135
- **J** 180

33 A rectangular rug is 24 feet long and 10 feet wide. A rhombus design is formed inside the rug by joining the midpoints of each side of the rectangle. What is the length of each side of the rhombus?

- **A** 13 ft
- **B** 26 ft
- **C** 169 ft
- **D** 240 ft
34 A man who is 6 feet tall casts a shadow that is 4 feet long. At the same time, a nearby flagpole casts a shadow that is 18 feet long. How tall is the flagpole?

F 10 ft
G 12 ft
H 22 ft
J 27 ft

35 A fish tank in the shape of a rectangular prism has these dimensions:

- length = 20 inches
- width = 10 inches
- height = 12 inches

What is the volume of water in the tank when it is \(\frac{4}{5} \) full?

A 1,120 cu in.
B 1,920 cu in.
C 2,400 cu in.
D 3,000 cu in.
36 Which of these nets would form a cube when folded?

F

G

H

J

37 If a cube with side length 6 inches has its dimensions divided in half, what will be the volume of the new cube?

A 108 cubic inches
B 54 cubic inches
C 27 cubic inches
D 9 cubic inches
38 A right cone is placed on its circular base.

Which statement about the cone is incorrect?

F The view from the front is a triangle.
G The view from the bottom is a circle.
H The view from the top is a circle.
J The view from the left is a rhombus.

39 A cone has a slant height of 10 centimeters and a lateral area of 60π square centimeters. What is the volume of a sphere with a radius equal to that of the cone?

A 102π cm3
B 144π cm3
C 288π cm3
D $1,333\pi$ cm3
40 Which line of reflection maps point K at $(-2, 2)$ to point K' at $(2, -2)$?

- F $y = 2$
- G $y = x$
- H x-axis
- J y-axis

41 If the coordinates of A are $(1, 1)$ and the midpoint of AB is $(-2, 0)$, then the coordinates of B are —

- A $(-0.5, 0.5)$
- B $(0.5, 0.5)$
- C $(-1, 0)$
- D $(-5, -1)$
42. Which transformation could move the triangle P to triangle P' in a single step?

F. Reflection over $x = 4$

G. Rotation about $(2, 3)$

H. Reflection over $y = 4$

J. Translation
43 Figure *STARFIND* is symmetric with respect to the x-axis. The coordinates of point A are $(8, 6)$. What are the coordinates of point N?

A $(8, -6)$
B $(6, -8)$
C $(-6, 8)$
D $(-8, 6)$
Parallelogram $RSTV$ has coordinates $R(0, 0), S(2, 4), T(6, 0),$ and $V(4, -4)$. Which ordered pair represents the intersection of the diagonals of this parallelogram? (The coordinate grid may be used to help answer this question.)

- **F** $(2, 0)$
- **G** $(3, 0)$
- **H** $(3, 1)$
- **J** $(4, -1)$
45 A regular quadrilateral has what type of symmetry?

A Line symmetry only
B Point symmetry only
C Both point and line symmetry
D Neither point nor line symmetry
<table>
<thead>
<tr>
<th>Test Sequence Number</th>
<th>Correct Answer</th>
<th>Reporting Category</th>
<th>Reporting Category Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>6</td>
<td>G</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>10</td>
<td>J</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>11</td>
<td>D</td>
<td>001</td>
<td>Lines and Angles</td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>13</td>
<td>A</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>14</td>
<td>G</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>16</td>
<td>H</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>19</td>
<td>C</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>20</td>
<td>J</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>21</td>
<td>B</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>22</td>
<td>G</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>23</td>
<td>A</td>
<td>002</td>
<td>Triangles and Logic</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>26</td>
<td>H</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>27</td>
<td>D</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>28</td>
<td>F</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>30</td>
<td>J</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>33</td>
<td>A</td>
<td>003</td>
<td>Polygons and Circles</td>
</tr>
<tr>
<td>34</td>
<td>J</td>
<td>004</td>
<td>Three-Dimensional Figures</td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td>004</td>
<td>Three-Dimensional Figures</td>
</tr>
<tr>
<td>36</td>
<td>F</td>
<td>004</td>
<td>Three-Dimensional Figures</td>
</tr>
<tr>
<td>37</td>
<td>C</td>
<td>004</td>
<td>Three-Dimensional Figures</td>
</tr>
<tr>
<td>38</td>
<td>J</td>
<td>004</td>
<td>Three-Dimensional Figures</td>
</tr>
<tr>
<td>39</td>
<td>C</td>
<td>004</td>
<td>Three-Dimensional Figures</td>
</tr>
<tr>
<td>40</td>
<td>G</td>
<td>005</td>
<td>Coordinate Relations and Transformations</td>
</tr>
<tr>
<td>41</td>
<td>D</td>
<td>005</td>
<td>Coordinate Relations and Transformations</td>
</tr>
<tr>
<td>42</td>
<td>J</td>
<td>005</td>
<td>Coordinate Relations and Transformations</td>
</tr>
<tr>
<td>43</td>
<td>A</td>
<td>005</td>
<td>Coordinate Relations and Transformations</td>
</tr>
<tr>
<td>44</td>
<td>G</td>
<td>005</td>
<td>Coordinate Relations and Transformations</td>
</tr>
<tr>
<td>45</td>
<td>C</td>
<td>005</td>
<td>Coordinate Relations and Transformations</td>
</tr>
</tbody>
</table>
If you get this many items correct: | Then your converted scale score is:
---|---
0 | 000
1 | 177
2 | 213
3 | 234
4 | 250
5 | 263
6 | 274
7 | 284
8 | 292
9 | 300
10 | 307
11 | 314
12 | 320
13 | 326
14 | 332
15 | 338
16 | 343
17 | 348
18 | 353
19 | 358
20 | 363
21 | 368
22 | 373
23 | 378
24 | 383
25 | 388
26 | 392
27 | 397
28 | 402
29 | 408
30 | 413
31 | 418
32 | 424
33 | 430
34 | 436
35 | 442
36 | 449
37 | 457
38 | 465
39 | 474
40 | 485
41 | 497
42 | 513
43 | 534
44 | 569
45 | 600

A total raw score (left column) is converted to a total scaled score (right column). The total scaled score may range from 0 to 600.

A scaled score of 400 or more means the student passed the SOL test, while a scaled score of 399 or less means the student did not pass the test. A scaled score of 500 or more indicates the student passed the SOL test at an advanced level.