Algebra I

The standards below outline the content for a one-year course in Algebra I. All students are expected to achieve the Algebra I standards. When planning for instruction, consideration will be given to the sequential development of concepts and skills by using concrete materials to assist students in making the transition from the arithmetic to the symbolic. Students should be helped to make connections and build relationships between algebra and arithmetic, geometry, and probability and statistics. Connections also should be made to other subject areas through practical applications. This approach to teaching algebra should help students attach meaning to the abstract concepts of algebra.

These standards require students to use algebra as a tool for representing and solving a variety of practical problems. Tables and graphs will be used to interpret algebraic expressions, equations, and inequalities and to analyze behaviors of functions.

Graphing calculators, computers, and other appropriate technology tools will be used to assist in teaching and learning. Graphing utilities enhance the understanding of functions; they provide a powerful tool for solving and verifying solutions to equations and inequalities.

Throughout the course, students should be encouraged to engage in discourse about mathematics with teachers and other students, use the language and symbols of mathematics in representations and communication, discuss problems and problem solving, and develop confidence in themselves as mathematics students.

Expressions and Operations

A.1 The student will represent verbal quantitative situations algebraically and evaluate these expressions for given replacement values of the variables.

A.2 The student will perform operations on polynomials, including
 a) applying the laws of exponents to perform operations on expressions;
 b) adding, subtracting, multiplying, and dividing polynomials; and
 c) factoring completely first- and second-degree binomials and trinomials in one or two variables. Graphing calculators will be used as a tool for factoring and for confirming algebraic factorizations.

A.3 The student will express the square roots and cube roots of whole numbers and the square root of a monomial algebraic expression in simplest radical form.

Equations and Inequalities

A.4 The student will solve multistep linear and quadratic equations in two variables, including
 a) solving literal equations (formulas) for a given variable;
 b) justifying steps used in simplifying expressions and solving equations, using field properties and axioms of equality that are valid for the set of real numbers and its subsets;
 c) solving quadratic equations algebraically and graphically;
 d) solving multistep linear equations algebraically and graphically;
 e) solving systems of two linear equations in two variables algebraically and graphically; and
 f) solving real-world problems involving equations and systems of equations. Graphing calculators will be used both as a primary tool in solving problems and to verify algebraic solutions.

A.5 The student will solve multistep linear inequalities in two variables, including
 a) solving multistep linear inequalities algebraically and graphically;
 b) justifying steps used in solving inequalities, using axioms of inequality and properties of order that are valid for the set of real numbers and its subsets;
 c) solving real-world problems involving inequalities; and
 d) solving systems of inequalities.
A.6 The student will graph linear equations and linear inequalities in two variables, including
a) determining the slope of a line when given an equation of the line, the graph of the line, or
two points on the line. Slope will be described as rate of change and will be positive,
negative, zero, or undefined; and
b) writing the equation of a line when given the graph of the line, two points on the line, or the
slope and a point on the line.

Functions
A.7 The student will investigate and analyze function (linear and quadratic) families and their
characteristics both algebraically and graphically, including
a) determining whether a relation is a function;
b) domain and range;
c) zeros of a function;
d) \(x \)- and \(y \)-intercepts;
e) finding the values of a function for elements in its domain; and
f) making connections between and among multiple representations of functions including
concrete, verbal, numeric, graphic, and algebraic.
A.8 The student, given a situation in a real-world context, will analyze a relation to determine
whether a direct or inverse variation exists, and represent a direct variation algebraically and
graphically and an inverse variation algebraically.

Statistics
A.9 The student, given a set of data, will interpret variation in real-world contexts and calculate and
interpret mean absolute deviation, standard deviation, and \(z \)-scores.
A.10 The student will compare and contrast multiple univariate data sets, using box-and-whisker
plots.
A.11 The student will collect and analyze data, determine the equation of the curve of best fit in
order to make predictions, and solve real-world problems, using mathematical models.
Mathematical models will include linear and quadratic functions.