Geometric Formulas

- **Triangle**
 \[A = \frac{1}{2}bh \]

- **Square**
 \[p = 4s \]
 \[A = s^2 \]

- **Rectangle**
 \[p = 2l + 2w \]
 \[A = lw \]

- **Circle**
 \[C = 2\pi r \]
 \[A = \pi r^2 \]

- **Parallelogram**
 \[A = bh \]
 \[A = \frac{1}{2}h(b_1 + b_2) \]

- **Trapezoid**
 \[V = lwh \]
 \[S.A. = 2lw + 2hl + 2wh \]

- **Cylinder**
 \[V = \pi r^2h \]
 \[S.A. = 2\pi r^2 + 2\pi rh \]

- **Cone**
 \[V = \frac{1}{3}Bh \]
 \[S.A. = \frac{1}{2}lp + B \]

- **Pyramid**
 \[V = \frac{1}{3}\pi r^2h \]
 \[S.A. = \pi r^2 + \pi rl \]

Abbreviations

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>milligram</td>
<td>mg</td>
</tr>
<tr>
<td>gram</td>
<td>g</td>
</tr>
<tr>
<td>kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>milliliter</td>
<td>mL</td>
</tr>
<tr>
<td>liter</td>
<td>L</td>
</tr>
<tr>
<td>kiloliter</td>
<td>kL</td>
</tr>
<tr>
<td>millimeter</td>
<td>mm</td>
</tr>
<tr>
<td>centimeter</td>
<td>cm</td>
</tr>
<tr>
<td>meter</td>
<td>m</td>
</tr>
<tr>
<td>kilometer</td>
<td>km</td>
</tr>
<tr>
<td>square centimeter</td>
<td>cm²</td>
</tr>
<tr>
<td>cubic centimeter</td>
<td>cm³</td>
</tr>
<tr>
<td>ounce</td>
<td>oz</td>
</tr>
<tr>
<td>pound</td>
<td>lb</td>
</tr>
<tr>
<td>quart</td>
<td>qt</td>
</tr>
<tr>
<td>gallon</td>
<td>gal.</td>
</tr>
<tr>
<td>inch</td>
<td>in.</td>
</tr>
<tr>
<td>foot</td>
<td>ft</td>
</tr>
<tr>
<td>yard</td>
<td>yd</td>
</tr>
<tr>
<td>mile</td>
<td>mi.</td>
</tr>
<tr>
<td>square inch</td>
<td>sq in.</td>
</tr>
<tr>
<td>square foot</td>
<td>sq ft.</td>
</tr>
<tr>
<td>cubic inch</td>
<td>cu in.</td>
</tr>
<tr>
<td>cubic foot</td>
<td>cu ft.</td>
</tr>
</tbody>
</table>

Area

- **Area of Base**
 \[A \]
- **Circumference**
 \[C \]
- **Perimeter**
 \[p \]
- **Surface Area**
 \[S.A. \]
- **Volume**
 \[V \]

Pi

- \(\pi \approx 3.14 \)
- \(\pi \approx \frac{22}{7} \)